Acquisition, Replication and Inoculation of Candidatus Liberibacter asiaticus following Various Acquisition Periods on Huanglongbing-Infected Citrus by Nymphs and Adults of the Asian Citrus Psyllid

PLoS One. 2016 Jul 21;11(7):e0159594. doi: 10.1371/journal.pone.0159594. eCollection 2016.

Abstract

The Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), is the primary vector of Candidatus Liberibacter asiaticus (Las) implicated as causative agent of citrus huanglongbing (citrus greening), currently the most serious citrus disease worldwide. Las is transmitted by D. citri in a persistent-circulative manner, but the question of replication of this bacterium in its psyllid vector has not been resolved. Thus, we studied the effects of the acquisition access period (AAP) by nymphs and adults of D. citri on Las acquisition, multiplication and inoculation/transmission. D. citri nymphs or adults (previously non-exposed to Las) were caged on Las-infected citrus plants for an AAP of 1, 7 or 14 days. These 'Las-exposed' psyllids were then transferred weekly to healthy citrus or orange jasmine plants, and sampled via quantitative polymerase chain reaction (qPCR) analysis 1-42 days post-first access to diseased plants (padp); all tested nymphs became adults 7-14 days padp. Our results indicate that following 1 or 7 day AAP as nymphs 49-59% of Las-exposed psyllids became Las-infected (qPCR-positive), whereas only 8-29% of the psyllids were infected following 1-14 day AAP as adults. Q-PCR analysis also indicated that Las titer in the Las-exposed psyllids (relative to that of the psyllid S20 ribosomal protein gene) was: 1) significantly higher, and increasing at a faster rate, following Las acquisition as nymphs compared to that following Las acquisition as adults; 2) higher as post-acquisition time of psyllids on healthy plants increased reaching a peak at 14-28 days padp for nymphs and 21-35 days padp for adults, with Las titer decreasing or fluctuating after that; 3) higher with longer AAP on infected plants, especially with acquisition as adults. Our results strongly suggest that Las multiplies in both nymphs and adults of D. citri but attains much higher levels in a shorter period of time post-acquisition when acquired by nymphs than when acquired by adults, and that adults may require longer access to infected plants compared to nymphs for Las to reach higher levels in the vector. However, under the conditions of our experiments, only D. citri that had access to infected plants as nymphs were able to inoculate Las into healthy citrus seedlings or excised leaves. The higher probability of Las inoculation into citrus by psyllids when they have acquired this bacterium from infected plants during the nymphal rather than the adult stage, as reported by us and others, has significant implications in the epidemiology and control of this economically important citrus disease.

MeSH terms

  • Analysis of Variance
  • Animals
  • Chi-Square Distribution
  • Citrus / microbiology*
  • Citrus / parasitology*
  • Hemiptera / physiology*
  • Nymph / physiology
  • Plant Diseases / microbiology*
  • Plant Diseases / parasitology*
  • Real-Time Polymerase Chain Reaction
  • Reproducibility of Results
  • Rhizobiaceae / physiology*

Grants and funding

This work was supported by Florida Citrus Research and Development Foundation (Grant no: Hall-93 to DG Hall); United States Department of Agriculture-Agricultural Research Service, Horticultural Research Laboratory, Fort Pierce, Florida, USA.