Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul 19;17(7):1164.
doi: 10.3390/ijms17071164.

Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy

Free PMC article

Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy

Valentina Turinetto et al. Int J Mol Sci. .
Free PMC article


Regenerative medicine is extensively interested in developing cell therapies using mesenchymal stem cells (MSCs), with applications to several aging-associated diseases. For successful therapies, a substantial number of cells are needed, requiring extensive ex vivo cell expansion. However, MSC proliferation is limited and it is quite likely that long-term culture evokes continuous changes in MSCs. Therefore, a substantial proportion of cells may undergo senescence. In the present review, we will first present the phenotypic characterization of senescent human MSCs (hMSCs) and their possible consequent functional alterations. The accumulation of oxidative stress and dysregulation of key differentiation regulatory factors determine decreased differentiation potential of senescent hMSCs. Senescent hMSCs also show a marked impairment in their migratory and homing ability. Finally, many factors present in the secretome of senescent hMSCs are able to exacerbate the inflammatory response at a systemic level, decreasing the immune modulation activity of hMSCs and promoting either proliferation or migration of cancer cells. Considering the deleterious effects that these changes could evoke, it would appear of primary importance to monitor the occurrence of senescent phenotype in clinically expanded hMSCs and to evaluate possible ways to prevent in vitro MSC senescence. An updated critical presentation of the possible strategies for in vitro senescence monitoring and prevention constitutes the second part of this review. Understanding the mechanisms that drive toward hMSC growth arrest and evaluating how to counteract these for preserving a functional stem cell pool is of fundamental importance for the development of efficient cell-based therapeutic approaches.

Keywords: differentiation potential; immunoregulatory activity; mesenchymal stem cells; migratory ability; senescence; tumour-promoting function.


Figure 1
Figure 1
Phenotypic characterization of senescent hMSCs. Senescent hMSCs activate p53/p21 and Rb/p16 pathways to block the cell cycle and sustain growth arrest. Senescent hMSCs are characterized by a specific SASP and by the presence of persistent DNA damage foci, containing γH2AX and 53BP1, and are positive for SA-β-gal.
Figure 2
Figure 2
Functional alterations occurring in senescent hMSCs. Senescent hMSCs exhibit impaired differentiation potential, altered immunoregulatory activity, reduced migratory, and homing ability, and increased tumour-promoting functions.

Similar articles

See all similar articles

Cited by 92 articles

See all "Cited by" articles


    1. Crisan M., Yap S., Casteilla L., Chen C.W., Corselli M., Park T.S., Andriolo G., Sun B., Zheng B., Zhang L., et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–313. doi: 10.1016/j.stem.2008.07.003. - DOI - PubMed
    1. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. - DOI - PubMed
    1. Gebler A., Zabel O., Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol. Med. 2012;18:128–134. doi: 10.1016/j.molmed.2011.10.004. - DOI - PubMed
    1. Sharma R.R., Pollock K., Hubel A., McKenna D. Mesenchymal stem or stromal cells: A review of clinical applications and manufacturing practices. Transfusion. 2014;54:1418–1437. doi: 10.1111/trf.12421. - DOI - PMC - PubMed
    1. Petrie Aronin C.E., Tuan R.S. Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells. Birth Defects Res. C Embryo Today. 2010;90:67–74. doi: 10.1002/bdrc.20174. - DOI - PubMed

MeSH terms