p38 MAP kinase is required for Wnt3a-mediated osterix expression independently of Wnt-LRP5/6-GSK3β signaling axis in dental follicle cells

Biochem Biophys Res Commun. 2016 Sep 16;478(2):527-32. doi: 10.1016/j.bbrc.2016.07.076. Epub 2016 Jul 19.

Abstract

Wnt3a is a secreted glycoprotein that activates the glycogen synthase kinase-3β (GSK3β)/β-catenin signaling pathway through low-density-lipoprotein receptor-related protein (LRP)5/6 co-receptors. Wnt3a has been implicated in periodontal development and homeostasis, as well as in cementum formation. Recently, we have reported that Wnt3a increases alkaline phosphatase expression through the induction of osterix (Osx) expression in dental follicle cells, a precursor of cementoblasts. However, the molecular mechanism by which Wnt3a induces Osx expression is still unknown. In this study, we show that Wnt3a-induced Osx expression was inhibited in the presence of p38 mitogen-activated protein kinase (MAPK) inhibitors (SB203580 and SB202190) at gene and protein levels, as assessed by real-time PCR and immunocytohistochemistry, respectively. Pretreatment of cells with Dickkopf-1, a potent canonical Wnt antagonist binding to LRP5/6 co-receptors, did not influence Wnt3a-mediated p38 MAPK phosphorylation, suggesting that Wnt3a activates p38 MAPK through LRP5/6-independent signaling. On the other hand, pretreatment with p38 MAPK inhibitors had no effects on the phosphorylated status of GSK3β and β-catenin as well as β-catenin nuclear translocation, but inhibited Wnt3a-mediated β-catenin transcriptional activity. These findings suggest that p38 MAPK modulates canonical Wnt signaling at the β-catenin transcriptional level without any crosstalk with the Wnt3a-mediated LRP5/6-GSK3β signaling axis and subsequent β-catenin nuclear translocation. These findings expand our knowledge of the mechanisms controlling periodontal development and regeneration.

Keywords: Dental follicle cells; Osterix; Wnt3a; p38 MAPK; β-catenin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Dental Sac / cytology*
  • Dental Sac / metabolism
  • Gene Expression Regulation*
  • Glycogen Synthase Kinase 3 beta / metabolism
  • Low Density Lipoprotein Receptor-Related Protein-5 / metabolism
  • Low Density Lipoprotein Receptor-Related Protein-6 / metabolism
  • Mice
  • Signal Transduction*
  • Sp7 Transcription Factor
  • Transcription Factors / genetics*
  • Transcription Factors / metabolism
  • Wnt Proteins / metabolism
  • Wnt3A Protein / metabolism*
  • p38 Mitogen-Activated Protein Kinases / metabolism*

Substances

  • Low Density Lipoprotein Receptor-Related Protein-5
  • Low Density Lipoprotein Receptor-Related Protein-6
  • Lrp5 protein, mouse
  • Lrp6 protein, mouse
  • Sp7 Transcription Factor
  • Sp7 protein, mouse
  • Transcription Factors
  • Wnt Proteins
  • Wnt3A Protein
  • Glycogen Synthase Kinase 3 beta
  • p38 Mitogen-Activated Protein Kinases