Pathogenesis of Kupffer Cells in Cholestatic Liver Injury

Am J Pathol. 2016 Sep;186(9):2238-47. doi: 10.1016/j.ajpath.2016.06.003. Epub 2016 Jul 22.

Abstract

Kupffer cells are the resident macrophages in the liver. They are located in hepatic sinusoid, which allows them to remove foreign materials, pathogens, and apoptotic cells efficiently. Activated Kupffer cells secrete various mediators, including cytokines and chemokines, to initiate immune responses, inflammation, or recruitment of other liver cells. Bile duct ligation (BDL) surgery in rodents is often studied as an animal model of cholestatic liver disease, characterized by obstruction of bile flow. BDL mice show altered functional activities of Kupffer cells compared with sham-operated mice, including elevated cytokine secretion and impaired bacterial clearance. Various mediators produced by other liver cells can regulate Kupffer cell activation, which suggest that Kupffer cells orchestrate with other liver cells to relay inflammatory signals and to maintain liver homeostasis during BDL-induced liver injury. Blocking or depletion of Kupffer cells, an approach for the treatment of liver diseases, has shown controversial implications. Procedures in Kupffer cell research have limitations and may produce various results in Kupffer cell research. It is important, however, to reveal underlying mechanisms of activation and functions of Kupffer cells, followed by hepatic inflammation and fibrosis. This review summarizes present Kupffer cell studies in cholestatic liver injury.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cholestasis / physiopathology*
  • Humans
  • Kupffer Cells / metabolism*
  • Kupffer Cells / pathology*