High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002

Cell Discov. 2015 Apr 28:1:15004. doi: 10.1038/celldisc.2015.4. eCollection 2015.

Abstract

Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc-ccp-cesAB-cesC-cesD-bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications.

Keywords: bioethanol; cell wall; cellulose; photosynthesis; synthetic biology.