High-Level Culturability of Epiphytic Bacteria and Frequency of Biosurfactant Producers on Leaves

Appl Environ Microbiol. 2016 Sep 16;82(19):5997-6009. doi: 10.1128/AEM.01751-16. Print 2016 Oct 1.

Abstract

To better characterize the bacterial community members capable of biosurfactant production on leaves, we distinguished culturable biosurfactant-producing bacteria from nonproducers and used community sequencing to compare the composition of these distinct cultured populations with that from DNA directly recovered from leaves. Communities on spinach, romaine, and head lettuce leaves were compared with communities from adjacent samples of soil and irrigation source water. Soil communities were poorly described by culturing, with recovery of cultured representatives from only 21% of the prevalent operational taxonomic units (OTUs) (>0.2% reads) identified. The dominant biosurfactant producers cultured from soil included bacilli and pseudomonads. In contrast, the cultured communities from leaves are highly representative of the culture-independent communities, with over 85% of the prevalent OTUs recovered. The dominant taxa of surfactant producers from leaves were pseudomonads as well as members of the infrequently studied genus Chryseobacterium The proportions of bacteria cultured from head lettuce and romaine leaves that produce biosurfactants were directly correlated with the culture-independent proportion of pseudomonads in a given sample, whereas spinach harbored a wider diversity of biosurfactant producers. A subset of the culturable bacteria in irrigation water also became enriched on romaine leaves that were irrigated overhead. Although our study was designed to identify surfactant producers on plants, we also provide evidence that most bacteria in some habitats, such as agronomic plant surfaces, are culturable, and these communities can be readily investigated and described by more classical culturing methods.

Importance: The importance of biosurfactant production to the bacteria that live on waxy leaf surfaces as well as their ability to be accurately assessed using culture-based methodologies was determined by interrogating epiphytic populations by both culture-dependent and culture-independent methods. Biosurfactant production was much more frequently observed in cultured communities on leaves than in other nearby habitats, such as soil and water, suggesting that this trait is important to life on a leaf by altering either the leaf itself or the interaction of bacteria with water. While pseudomonads were the most common biosurfactant producers isolated, this habitat also selects for taxa, such as Chryseobacterium, for which this trait was previously unrecognized. The finding that most epiphytic bacterial taxa were culturable validates strategies using more classical culturing methodologies for their study in this habitat.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteria / genetics*
  • Bacteria / metabolism
  • High-Throughput Screening Assays
  • Metagenome*
  • Microbiota*
  • Plant Leaves / microbiology*
  • Surface-Active Agents / metabolism*

Substances

  • Surface-Active Agents