Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability

Rev Sci Instrum. 2016 Jul;87(7):073301. doi: 10.1063/1.4954921.

Abstract

Radiochromic films (RCF) are commonly used in dosimetry for a wide range of radiation sources (electrons, protons, and photons) for medical, industrial, and scientific applications. They are multi-layered, which includes plastic substrate layers and sensitive layers that incorporate a radiation-sensitive dye. Quantitative dose can be retrieved by digitizing the film, provided that a prior calibration exists. Here, to calibrate the newly developed EBT3 and HDv2 RCFs from Gafchromic™, we used the Stanford Medical LINAC to deposit in the films various doses of 10 MeV photons, and by scanning the films using three independent EPSON Precision 2450 scanners, three independent EPSON V750 scanners, and two independent EPSON 11000XL scanners. The films were scanned in separate RGB channels, as well as in black and white, and film orientation was varied. We found that the green channel of the RGB scan and the grayscale channel are in fact quite consistent over the different models of the scanner, although this comes at the cost of a reduction in sensitivity (by a factor ∼2.5 compared to the red channel). To allow any user to extend the absolute calibration reported here to any other scanner, we furthermore provide a calibration curve of the EPSON 2450 scanner based on absolutely calibrated, commercially available, optical density filters.

MeSH terms

  • Calibration
  • Film Dosimetry / instrumentation*
  • Film Dosimetry / methods*
  • Film Dosimetry / standards
  • Models, Theoretical*