Dose-dependent effect of N'-Nitrosodiethylamine on hepatic architecture, RBC rheology and polypeptide repertoire in Wistar rats

Interdiscip Toxicol. 2015 Mar;8(1):1-7. doi: 10.1515/intox-2015-0001.

Abstract

N'-Nitrosodiethylamine (NDEA) is an effective hepatotoxicant, carcinogen and mutagen. NDEA-induced hepatic necrosis, through metabolic activation by CYP2E1, is an extensively used experimental model. In the present study, we analysed the dose- and time-dependent effect of NDEA on hepatic damage, RBC rheology and proteomic profile in male Wistar rats. The rats, 5-6 weeks old, were divided into four groups: Group-1 served as control and received normal saline, Group-2 received a single dose of 200 mg/kg body weight NDEA intraperitoneally (i.p.) and the animals were sacrificed after one week; the rats of Group-3 received a single dose of 100 mg/kg body weight NDEA and were sacrificed after one week; Group-4 received 100 mg/kg body weight/wk NDEA for two weeks and were then sacrificed. Various biochemical parameters such as ALT, AST, ALP and bilirubin were determined. Further, RBC rheology, histopathology (H&E staining) of liver biopsies and polypeptide profiling (SDS-PAGE) in sera and liver sections were also carried out both in control and NDEA treated groups. Our results showed a significant increase in all the biochemical parameters of the liver function test (p<0.05). In NDEA treated categories dacryocytes (tear drop cells), schistocytes (fragmented cells), codocytes (target cells), acanthocytes (spur cells) and ovalocytes (oval cells) were observed. H & E stained liver biopsies treated with NDEA showed abnormal liver architecture with severe haemorrhage, neutrophilic infiltration and dysplastic hepatocytes manifested in a dose-dependent manner. Software analysis of SDS-PAGE of control and NDEA treated rat sera and liver revealed qualitative and quantitative differences in polypeptide composition. Based on the presence/absence, polypeptides were classified in three different categories: (1) house-keeping, present in all the groups investigated; (2) novel, present in either control or NDEA treated group at any given time; (3) differential expression, showing quantitative differences. Our study indicates a dose and time-dependent hepatocellular damage and proteome profile which is likely due to NDEA-mediated oxidative stress in rats.

Keywords: N'-Nitrosodiethylamine; RBC; SDS-PAGE; hepatotoxicity; oxidative stress; polypeptide repertoire.