The aim of the present study was to evaluate the ecotoxicological effects of olive mill waste (OMW) on soil habitat function. To this end, soil samples from OMW evaporating ponds (S1-S5) located at Agareb (Sfax, Tunisia) and a reference soil (R) were collected. The effects of OMW on the springtails Folsomia candida (F.c.), the earthworm species Eisenia fetida (E.f.), Enchytraeus crypticus (E.c.) reproduction and on the soil living microbial communities were investigated. E.f. reproduction and tomato growth assays were performed in the reference soil amended with 0.43 to 7.60 % (wOMW/wref-soil) mass ratios of dried OMW. Changes in microbial function diversity were explored using sole-carbon-source utilization profiles (BiologEcoPlates®). E.f. absolutely avoided (100 %) the most polluted soil (S4) while the F.c. moderately avoided (37.5 ± 7.5 %) the same soil. E.c. reproduction in S4 was significantly lower than in S1, S2, S3 and S5, and was the highest in R soil. Estimated effect concentration EC50 for juveniles' production by E.f., and for tomato fresh weight and chlorophyll content were 0.138, 0.6 and 1.13 %, respectively. Community level physiological profiles (CLPPs) were remarkably different in R and S4 and a higher similarity was observed between soils S1, S2, S3 and S5. Principal component analysis (PCA) revealed that differences between soil microbial functional diversity were mainly due to high polyphenol concentrations, while the salinity negatively affected E.c. reproduction in OMW contaminated soils. These results clearly reflect the high toxicity of dried OMW when added to agricultural soils, causing severe threats to terrestrial ecosystem functions and services provided by invertebrates and microbial communities.
Keywords: Community level physiological profiles (CLPPs); Dried olive mill waste impacts; Polyphenol toxicity; Soil amendment; Terrestrial ecotoxicological tests.