Allelic diversity of S-RNase alleles in diploid potato species

Theor Appl Genet. 2016 Oct;129(10):1985-2001. doi: 10.1007/s00122-016-2754-7. Epub 2016 Aug 6.

Abstract

The S-ribonuclease sequences of 16 S-alleles derived from diploid types of Solanum are presented. A phylogenetic analysis and partial phenotypic analysis support the conclusion that these are functional S-alleles. S-Ribonucleases (S-RNases) control the pistil specificity of the self-incompatibility (SI) response in the genus Solanum and several other members of the Solanaceae. The nucleotide sequences of S-RNases corresponding to a large number of S-alleles or S-haplotypes have been characterised. However, surprisingly, few S-RNase sequences are available for potato species. The identification of new S-alleles in diploid potato species is desirable as these stocks are important sources of traits such as biotic and abiotic resistance. S-RNase sequences are reported here from three distinct diploid types of potato: cultivated Solanum tuberosum Group Phureja, S. tuberosum Group Stenotomum, and the wild species Solanum okadae. Partial S-RNase sequences were obtained from pistil RNA by RT-PCR or 3'RACE (Rapid Amplification of cDNA Ends) using a degenerate primer. Full-length sequences were obtained for two alleles by 5'RACE. Database searches with these sequences identified 16 S-RNases in total, all of which are novel. The sequence analysis revealed all the expected features of functional S-RNases. Phylogenetic analysis with selected published S-RNase and S-like-RNase sequences from the Solanaceae revealed extensive trans-generic evolution of the S-RNases and a clear distinction from S-like-RNases. Pollination tests were used to confirm the self-incompatibility status and cross-compatibility relationships of the S. okadae accessions. All the S. okadae accessions were found to be self-incompatible as expected with crosses amongst them exhibiting both cross-compatibility and semi-compatibility consistent with the S-genotypes determined from the S-RNase sequence data. The progeny analysis of four semi-compatible crosses examined by allele-specific PCR provided further confirmation that these are functional S-RNases.

MeSH terms

  • Alleles*
  • Amino Acid Sequence
  • DNA, Plant / genetics
  • Diploidy
  • Evolution, Molecular
  • Flowers / genetics
  • Genetic Variation
  • Genotype
  • Phenotype
  • Phylogeny
  • Plant Proteins / genetics*
  • Pollination
  • Ribonucleases / genetics*
  • Self-Incompatibility in Flowering Plants / genetics*
  • Sequence Alignment
  • Sequence Analysis, DNA
  • Solanum / enzymology
  • Solanum / genetics
  • Solanum tuberosum / enzymology
  • Solanum tuberosum / genetics*

Substances

  • DNA, Plant
  • Plant Proteins
  • Ribonucleases
  • ribonuclease S