Subzero 12-hour Nonfreezing Cryopreservation of Porcine Heart in a Variable Magnetic Field

Transplant Direct. 2015 Oct 9;1(9):e33. doi: 10.1097/TXD.0000000000000544. eCollection 2015 Oct.

Abstract

Background: A novel subzero nonfreezing heart preservation method has been developed. It uses a refrigerating device that generates a variable magnetic field, allowing the whole organ to be cooled simultaneously to a supercooled state without the use of cryoprotectant. As a fundamental experiment for heart preservation, we verified whether this novel method is able to suppress anaerobic metabolism and reduce damage in the hearts of large animals.

Methods: Twelve porcine hearts were collected and preserved for 12 hours using a simple immersion method. The hearts were divided into 2 groups: 6 underwent nonfreezing preservation at -3°C in a variable magnetic field (subzero group), and 6 underwent conventional preservation at 4°C (conventional group). The quantity of anaerobic metabolism and the degree of ultrastructural change in the 2 groups were evaluated and compared.

Results: The concentration of adenosine triphosphate in the myocardial tissue was significantly greater in the subzero group than in the conventional group (21.06±5.87 μmol/g vs 5.96±3.41 μmol/g; P < 0.05). The accumulated lactate concentration was significantly lower in the subzero group than in the conventional group (6.58±2.28 μmol/g vs 11.15±3.74 μmol/g; P < 0.05). The Flameng score, an index of ultrastructural changes to the mitochondria, was significantly lower in the subzero group than in the conventional group (1.28±0.40 vs 2.73±0.30; P < 0.05).

Conclusions: Subzero nonfreezing preservation using a variable magnetic field resulted in a remarkable suppression of anaerobic metabolism and myocardial protection in porcine hearts.