Investigation of Co-incorporated pristine and Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries

Dalton Trans. 2016 Oct 21;45(39):15317-15325. doi: 10.1039/c6dt02058e. Epub 2016 Aug 15.

Abstract

Monoclinic Li3V2(PO4)3/C (LVP/C) and Li3V1.95Fe0.05(PO4)3/C (LVFP/C) composites were successfully modified by cobalt incorporation. The effects of cobalt incorporation on the structure, morphology and electrochemical performance of the LVP/C and LVFP/C composites were systematically investigated. The results show that most Co exists in the form of CoO and forms a hybrid layer with the carbon coating on the surface of the LVP and LVFP particles; moreover, a small part of Co enters into the LVP or LVFP lattices due to atomic diffusion. Compared with LVP/C and LVFP/C, Co-incorporated samples exhibit better electrochemical performance. In particular, under the common effect of doping and a hybrid layer (carbon and metal oxides) coating, the LVFP/C-Co electrode displays a prominent initial capacity of 124.7 mA h g-1 and a very low capacity fading of ∼0.04% per cycle even after 500 cycles at 20 C. This novel co-modification method with cation doping and a hybrid layer (carbon and metal oxide) coating is a highly effective way to improve the electrochemical performance and has great potential to be easily used to modify other cathode materials with poor electrical conductivity.