Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 1;129(19):3541-3552.
doi: 10.1242/jcs.189803. Epub 2016 Aug 15.

Human satellite-III Non-Coding RNAs Modulate Heat-Shock-Induced Transcriptional Repression

Free article

Human satellite-III Non-Coding RNAs Modulate Heat-Shock-Induced Transcriptional Repression

Anshika Goenka et al. J Cell Sci. .
Free article


The heat shock response is a conserved defense mechanism that protects cells from physiological stress, including thermal stress. Besides the activation of heat-shock-protein genes, the heat shock response is also known to bring about global suppression of transcription; however, the mechanism by which this occurs is poorly understood. One of the intriguing aspects of the heat shock response in human cells is the transcription of satellite-III (Sat3) long non-coding RNAs and their association with nuclear stress bodies (nSBs) of unknown function. Besides association with the Sat3 transcript, the nSBs are also known to recruit the transcription factors HSF1 and CREBBP, and several RNA-binding proteins, including the splicing factor SRSF1. We demonstrate here that the recruitment of CREBBP and SRSF1 to nSBs is Sat3-dependent, and that loss of Sat3 transcripts relieves the heat-shock-induced transcriptional repression of a few target genes. Conversely, forced expression of Sat3 transcripts results in the formation of nSBs and transcriptional repression even without a heat shock. Our results thus provide a novel insight into the regulatory role for the Sat3 transcripts in heat-shock-dependent transcriptional repression.

Keywords: Heat shock response; Non-coding RNA; Nuclear stress bodies; Transcription factor.

Similar articles

See all similar articles

Cited by 12 articles

See all "Cited by" articles

Publication types

LinkOut - more resources