Elastic and ultradeformable liposomes were synthesized and physicochemically characterized to make suitable topical formulations for delivering the anti-inflammatory and anticancer compound 3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans-propenoic acid. The average sizes of elastic and ultradeformable liposomes are below 300 nm, while the size distribution and Z-potential are below 0.3 and - 25 mV, respectively. The presence of 3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans-propenoic acid does not affect the physicochemical parameters of nanovesicles. Elastic and ultradeformable liposomes show a zero order release kinetic and are stable at room temperature for a long time with or without 3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans-propenoic acid. The ultradeformable liposomes are more deformable than elastic liposomes. These differences may depend on sodium cholate derivatives making nanoformulations. The 3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans-propenoic acid-loaded elastic and ultradeformable liposomes can provide innovative nanotherapeutics-based natural compounds for the potential treatment of cutanous inflammation.
Georg Thieme Verlag KG Stuttgart · New York.