Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana

Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5232-41. doi: 10.1073/pnas.1610985113. Epub 2016 Aug 22.

Abstract

Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues.

Keywords: desiccation tolerance; drought tolerance; oligosaccharides; regulatory network; seed development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / genetics*
  • Arabidopsis / genetics*
  • Arabidopsis / metabolism
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Desiccation
  • Gene Expression Profiling*
  • Gene Expression Regulation, Plant*
  • Gene Ontology
  • Gene Regulatory Networks*
  • Genomics / methods
  • Metabolomics / methods
  • Mutation
  • Plants, Genetically Modified
  • Seeds / genetics*
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Arabidopsis Proteins
  • Transcription Factors