Semi-Automated Annotation of Biobank Data Using Standard Medical Terminologies in a Graph Database

Stud Health Technol Inform. 2016;228:755-9.


Data describing biobank resources frequently contains unstructured free-text information or insufficient coding standards. (Bio-) medical ontologies like Orphanet Rare Diseases Ontology (ORDO) or the Human Disease Ontology (DOID) provide a high number of concepts, synonyms and entity relationship properties. Such standard terminologies increase quality and granularity of input data by adding comprehensive semantic background knowledge from validated entity relationships. Moreover, cross-references between terminology concepts facilitate data integration across databases using different coding standards. In order to encourage the use of standard terminologies, our aim is to identify and link relevant concepts with free-text diagnosis inputs within a biobank registry. Relevant concepts are selected automatically by lexical matching and SPARQL queries against a RDF triplestore. To ensure correctness of annotations, proposed concepts have to be confirmed by medical data administration experts before they are entered into the registry database. Relevant (bio-) medical terminologies describing diseases and phenotypes were identified and stored in a graph database which was tied to a local biobank registry. Concept recommendations during data input trigger a structured description of medical data and facilitate data linkage between heterogeneous systems.

MeSH terms

  • Biological Specimen Banks*
  • Databases, Factual*
  • Humans
  • Information Storage and Retrieval / methods*
  • Semantics
  • Systems Integration