A high-resolution global flood hazard model
- PMID: 27594719
- PMCID: PMC4989447
- DOI: 10.1002/2015WR016954
A high-resolution global flood hazard model
Abstract
Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ∼90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ∼1 km, mean absolute error in flooded fraction falls to ∼5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.
Keywords: flooding; global; hydraulic; large‐scale modeling.
Figures
Similar articles
-
Flood hazard delineation in an ungauged catchment by coupling hydrologic and hydraulic models with geospatial techniques-a case study of Koraiyar basin, Tiruchirappalli City, Tamil Nadu, India.Environ Monit Assess. 2020 Oct 8;192(11):689. doi: 10.1007/s10661-020-08650-2. Environ Monit Assess. 2020. PMID: 33030599
-
ReAFFIRM: Real-time Assessment of Flash Flood Impacts - a Regional high-resolution Method.Environ Int. 2020 Mar;136:105375. doi: 10.1016/j.envint.2019.105375. Epub 2020 Jan 21. Environ Int. 2020. PMID: 31978631
-
Uncertainties of urban flood modeling: Influence of parameters for different underlying surfaces.Environ Res. 2020 Mar;182:108929. doi: 10.1016/j.envres.2019.108929. Epub 2019 Dec 4. Environ Res. 2020. PMID: 31855699
-
Understanding dynamics of population flood exposure in Canada with multiple high-resolution population datasets.Sci Total Environ. 2021 Mar 10;759:143559. doi: 10.1016/j.scitotenv.2020.143559. Epub 2020 Nov 6. Sci Total Environ. 2021. PMID: 33220996
-
Flood management: prediction of microbial contamination in large-scale floods in urban environments.Environ Int. 2011 Jul;37(5):1019-29. doi: 10.1016/j.envint.2011.03.015. Epub 2011 Apr 9. Environ Int. 2011. PMID: 21481472 Review.
Cited by
-
Spatially interactive modeling of land change identifies location-specific adaptations most likely to lower future flood risk.Sci Rep. 2023 Nov 1;13(1):18869. doi: 10.1038/s41598-023-46195-9. Sci Rep. 2023. PMID: 37914805 Free PMC article.
-
Mapping global non-floodplain wetlands.Earth Syst Sci Data. 2023 Jul 11;15(7):2927-2955. doi: 10.5194/essd-15-2927-2023. Earth Syst Sci Data. 2023. PMID: 37841644
-
Global evidence of rapid urban growth in flood zones since 1985.Nature. 2023 Oct;622(7981):87-92. doi: 10.1038/s41586-023-06468-9. Epub 2023 Oct 4. Nature. 2023. PMID: 37794266
-
Human alterations of the global floodplains 1992-2019.Sci Data. 2023 Jul 28;10(1):499. doi: 10.1038/s41597-023-02382-x. Sci Data. 2023. PMID: 37507416 Free PMC article.
-
Flood hazard potential reveals global floodplain settlement patterns.Nat Commun. 2023 May 16;14(1):2801. doi: 10.1038/s41467-023-38297-9. Nat Commun. 2023. PMID: 37193705 Free PMC article.
References
-
- Abbott, M. B. , Bathurst J. C., Cunge J. A., O'Connell P. E., and Rasmussen J. (1986a), An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically‐based, distributed modelling system, J. Hydrol., 87, 45–59, doi:10.1016/0022-1694(86)90114-9. - DOI
-
- Abbott, M. B. , Bathurst J. C., Cunge J. A., O'Connell P. E., and Rasmussen J. (1986b), An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically‐based, distributed modelling system, J. Hydrol., 87, 61–77, doi:10.1016/0022-1694(86)90115-0. - DOI
-
- Abrams, M. (2000), The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform, Int. J. Remote Sens., 21, 847–859, doi:10.1080/014311600210326. - DOI
-
- Ackerman, C. , Fleming M., and Brunner G. (2008), Hydrologic and hydraulic models for performing dam break studies, in World Environmental and Water Resources Congress 2008, pp. 1–11, Am. Soc. of Civil Eng., USA.
-
- Alfieri, L. , Salamon P., Bianchi A., Neal J., Bates P., and Feyen L. (2013), Advances in pan‐European flood hazard mapping, Hydrol. Processes, 28, 4067–4077, doi:10.1002/hyp.9947. - DOI
LinkOut - more resources
Full Text Sources
Research Materials