Comparative proteome analysis of abdominal adipose tissues between fat and lean broilers

Proteome Sci. 2016 Sep 1;14(1):9. doi: 10.1186/s12953-016-0100-2. eCollection 2016.

Abstract

Background: The molecular mechanism underlying broiler fat deposition is still poorly understood.

Method: Currently, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in abdominal adipose tissues of birds at 4 week of age derived from Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF).

Results: Thirteen differentially expressed protein spots were screened out and identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The protein spots were matched to thirteen proteins by searching against the NCBInr database. These identified proteins were apolipoprotein A-I (Apo A-I), cytokeratin otokeratin, ATP synthase subunit alpha, peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4), aspartate aminotransferase, carbonic anhydrase II (CA-II), prostaglandin-H2 D-isomerase precursor, fibrinogen alpha chain, lamin-A (LMNA), superoxide dismutase [Mn] (MnSOD), heat shock protein beta-1 (HSPβ1) and two predicted proteins. These differentially expressed proteins are involved mainly in lipid metabolism, amino acid metabolism, signal transduction, energy conversion, antioxidant, and cytoskeleton. Differential expression of Apo A-I, PPIase FKBP4, and cytokeratin otokeratin proteins were further confirmed by Western blot analysis. Quantitative real-time RT-PCR analyses showed that, of these 13 differentially expressed proteins, only PPIase FKBP4 and cytokeratin otokeratin were differentially expressed at mRNA level between the two lines.

Conclusions: Our results have provided further information for understanding the basic genetics control of growth and development of broiler adipose tissue.

Keywords: Abdominal adipose tissue; Broiler; Differentially expressed protein; Proteomics.