c-Fos over-expression promotes radioresistance and predicts poor prognosis in malignant glioma
- PMID: 27602752
- PMCID: PMC5323205
- DOI: 10.18632/oncotarget.11779
c-Fos over-expression promotes radioresistance and predicts poor prognosis in malignant glioma
Abstract
c-Fos is a major component of activator protein (AP)-1 complex. It has been implicated in cell differentiation, proliferation, angiogenesis, invasion, and metastasis. To investigate the role of c-Fos in glioma radiosensitivity and to understand the underlying molecular mechanisms, we downregulated c-Fos gene expression by lentivirus-mediated shRNA in glioma cell lines and subsequently analyzed the radiosensitivity, DNA damage repair capacity, and cell cycle distribution. Finally, we explored its prognostic value in 41 malignant glioma patients by immunohistochemistry. Our results showed that silencing c-Fos sensitized glioma cells to radiation by increasing radiation-induced DNA double strand breaks (DSBs), disturbing the DNA damage repair process, promoting G2/M cell cycle arrest, and enhancing apoptosis. c-Fos protein overexpression correlated with poor prognosis in malignant glioma patients treated with standard therapy. Our findings provide new insights into the mechanism of radioresistance in malignant glioma and identify c-Fos as a potentially novel therapeutic target for malignant glioma patients.
Keywords: c-Fos; malignant glioma; prognosis; radioresistance.
Conflict of interest statement
The authors have no conflicts of interest to declare.
Figures
Similar articles
-
Silencing of ATM expression by siRNA technique contributes to glioma stem cell radiosensitivity in vitro and in vivo.Oncol Rep. 2017 Jul;38(1):325-335. doi: 10.3892/or.2017.5665. Epub 2017 May 24. Oncol Rep. 2017. PMID: 28560406
-
MicroRNA-584-3p, a novel tumor suppressor and prognostic marker, reduces the migration and invasion of human glioma cells by targeting hypoxia-induced ROCK1.Oncotarget. 2016 Jan 26;7(4):4785-805. doi: 10.18632/oncotarget.6735. Oncotarget. 2016. PMID: 26715733 Free PMC article.
-
Fos-related antigen 1 modulates malignant features of glioma cells.Mol Cancer Res. 2005 Apr;3(4):237-49. doi: 10.1158/1541-7786.MCR-05-0004. Mol Cancer Res. 2005. PMID: 15831677
-
Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas.J Exp Clin Cancer Res. 2020 Jul 7;39(1):129. doi: 10.1186/s13046-020-01639-2. J Exp Clin Cancer Res. 2020. PMID: 32631383 Free PMC article. Review.
-
Biological Adaptations of Tumor Cells to Radiation Therapy.Front Oncol. 2021 Nov 24;11:718636. doi: 10.3389/fonc.2021.718636. eCollection 2021. Front Oncol. 2021. PMID: 34900673 Free PMC article. Review.
Cited by
-
FTO up-regulation induced by MYC suppresses tumour progression in Epstein-Barr virus-associated gastric cancer.Clin Transl Med. 2023 Dec;13(12):e1505. doi: 10.1002/ctm2.1505. Clin Transl Med. 2023. PMID: 38082402 Free PMC article.
-
Protection of c-Fos from autophagic degradation by PRMT1-mediated methylation fosters gastric tumorigenesis.Int J Biol Sci. 2023 Jul 15;19(12):3640-3660. doi: 10.7150/ijbs.85126. eCollection 2023. Int J Biol Sci. 2023. PMID: 37564212 Free PMC article.
-
Ligand-Gated Ion Channels: Prognostic and Therapeutic Implications for Gliomas.J Pers Med. 2023 May 19;13(5):853. doi: 10.3390/jpm13050853. J Pers Med. 2023. PMID: 37241023 Free PMC article. Review.
-
NQO1 regulates cell cycle progression at the G2/M phase.Theranostics. 2023 Jan 10;13(3):873-895. doi: 10.7150/thno.77444. eCollection 2023. Theranostics. 2023. PMID: 36793872 Free PMC article.
-
The Role of Hyperexcitability in Gliomagenesis.Int J Mol Sci. 2023 Jan 1;24(1):749. doi: 10.3390/ijms24010749. Int J Mol Sci. 2023. PMID: 36614191 Free PMC article. Review.
References
-
- Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England journal of medicine. 2005;352:987–996. - PubMed
-
- Gurley SN, Abidi AH, Allison P, Guan P, Duntsch C, Robertson JH, Kosanke SD, Keir ST, Bigner DD, Elberger AJ, Moore BM., 2nd Mechanism of anti-glioma activity and in vivo efficacy of the cannabinoid ligand KM-233. Journal of neuro-oncology. 2012;110:163–177. - PubMed
-
- Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lutolf UM, Kleihues P. Genetic pathways to glioblastoma: a population-based study. Cancer research. 2004;64:6892–6899. - PubMed
-
- Atkins RJ, Ng W, Stylli SS, Hovens CM, Kaye AH. Repair mechanisms help glioblastoma resist treatment. Journal of clinical neuroscience. 2015;22:14–20. - PubMed
-
- Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239–252. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
