Proteomic and network analysis of pregnancy-induced changes in the porcine endometrium on Day 12 of gestation

Mol Reprod Dev. 2016 Sep;83(9):827-841. doi: 10.1002/mrd.22733. Epub 2016 Sep 20.

Abstract

Conceptus attachment is a time-sensitive process that requires a synchronized uterine environment created by molecular changes in the endometrium in response to ovarian hormones and conceptus signals. Porcine conceptuses undergo rapid elongation and differentiation, and secrete estrogens that serve as maternal-recognition-of-pregnancy signals during the peri-implantation period (Days 11-12). Pregnancy-induced proteomic changes in the porcine endometrium were measured during this period using two-dimensional differential gel electrophoresis of endometrial protein lysates from Day-12 pregnant versus non-pregnant animals (n = 4 each). Forty-four differentially abundant proteins in the pregnant endometrium were identified by mass spectrometry. The pregnant endometrium was associated with a unique protein profile, revealed by principal component analysis. A pregnancy-dependent increase in the abundance of serpins, cofilin, annexin A2, aldose reductase, cyclophilin, protein disulphide isomerase A3, and peroxiredoxin 1 was observed. Western blotting for some of the selected proteins confirmed their enrichment during pregnancy. Ingenuity pathway analysis identified several functions specifically over-represented among the differentially abundant proteins in the pregnant endometrium, including calcium signaling, angiogenesis, leukocyte migration, and cell movement. Interleukin-1 beta and beta-estradiol were identified as upstream regulators of several high-abundance proteins from pregnancy. Therefore, signals from porcine conceptuses, such as estrogens, interleukin 1B, and epidermal growth factor, either alone or in coordination with other factors, prepare the uterus for implantation. Mol. Reprod. Dev. 83: 827-841, 2016 © 2016 Wiley Periodicals, Inc.

MeSH terms

  • Animals
  • Endometrium / metabolism*
  • Female
  • Gene Expression Regulation / physiology*
  • Pregnancy / metabolism*
  • Pregnancy Proteins / biosynthesis*
  • Proteomics
  • Swine / metabolism*

Substances

  • Pregnancy Proteins