GPCR Dynamics: Structures in Motion

Chem Rev. 2017 Jan 11;117(1):139-155. doi: 10.1021/acs.chemrev.6b00177. Epub 2016 Sep 13.


The function of G protein-coupled receptors (GPCRs)-which represent the largest class of both human membrane proteins and drug targets-depends critically on their ability to change shape, transitioning among distinct conformations. Determining the structural dynamics of GPCRs is thus essential both for understanding the physiology of these receptors and for the rational design of GPCR-targeted drugs. Here we review what is currently known about the flexibility and dynamics of GPCRs, as determined through crystallography, spectroscopy, and computer simulations. We first provide an overview of the types of motion exhibited by a GPCR and then discuss GPCR dynamics in the context of ligand binding, activation, allosteric modulation, and biased signaling. Finally, we discuss the implications of GPCR conformational plasticity for drug design.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Protein Conformation
  • Receptors, G-Protein-Coupled / chemistry*


  • Receptors, G-Protein-Coupled