Structural insights into the molecular mechanism of the m(6)A writer complex
- PMID: 27627798
- PMCID: PMC5023411
- DOI: 10.7554/eLife.18434
Structural insights into the molecular mechanism of the m(6)A writer complex
Abstract
Methylation of adenosines at the N(6) position (m(6)A) is a dynamic and abundant epitranscriptomic mark that regulates critical aspects of eukaryotic RNA metabolism in numerous biological processes. The RNA methyltransferases METTL3 and METTL14 are components of a multisubunit m(6)A writer complex whose enzymatic activity is substantially higher than the activities of METTL3 or METTL14 alone. The molecular mechanism underpinning this synergistic effect is poorly understood. Here we report the crystal structure of the catalytic core of the human m(6)A writer complex comprising METTL3 and METTL14. The structure reveals the heterodimeric architecture of the complex and donor substrate binding by METTL3. Structure-guided mutagenesis indicates that METTL3 is the catalytic subunit of the complex, whereas METTL14 has a degenerate active site and plays non-catalytic roles in maintaining complex integrity and substrate RNA binding. These studies illuminate the molecular mechanism and evolutionary history of eukaryotic m(6)A modification in post-transcriptional genome regulation.
Keywords: RNA; X-ray crystallography; biochemistry; biophysics; epitranscriptomics; human; m6A; methyltransferase; post-transcriptional gene regulation; structural biology.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures
Similar articles
-
Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases.Mol Cell. 2016 Jul 21;63(2):306-317. doi: 10.1016/j.molcel.2016.05.041. Epub 2016 Jun 30. Mol Cell. 2016. PMID: 27373337 Free PMC article.
-
Dynamic assembly of the mRNA m6A methyltransferase complex is regulated by METTL3 phase separation.PLoS Biol. 2022 Feb 10;20(2):e3001535. doi: 10.1371/journal.pbio.3001535. eCollection 2022 Feb. PLoS Biol. 2022. PMID: 35143475 Free PMC article.
-
Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex.RNA. 2018 Apr;24(4):499-512. doi: 10.1261/rna.064063.117. Epub 2018 Jan 18. RNA. 2018. PMID: 29348140 Free PMC article.
-
The RNA m6A writer METTL14 in cancers: Roles, structures, and applications.Biochim Biophys Acta Rev Cancer. 2021 Dec;1876(2):188609. doi: 10.1016/j.bbcan.2021.188609. Epub 2021 Aug 8. Biochim Biophys Acta Rev Cancer. 2021. PMID: 34375716 Review.
-
Roles of METTL3 in cancer: mechanisms and therapeutic targeting.J Hematol Oncol. 2020 Aug 27;13(1):117. doi: 10.1186/s13045-020-00951-w. J Hematol Oncol. 2020. PMID: 32854717 Free PMC article. Review.
Cited by
-
METTL16, Methyltransferase-Like Protein 16: Current Insights into Structure and Function.Int J Mol Sci. 2021 Feb 22;22(4):2176. doi: 10.3390/ijms22042176. Int J Mol Sci. 2021. PMID: 33671635 Free PMC article. Review.
-
METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications.Theranostics. 2020 Jul 11;10(20):8939-8956. doi: 10.7150/thno.45178. eCollection 2020. Theranostics. 2020. PMID: 32802173 Free PMC article.
-
Acute depletion of METTL3 implicates N 6-methyladenosine in alternative intron/exon inclusion in the nascent transcriptome.Genome Res. 2021 Aug;31(8):1395-1408. doi: 10.1101/gr.271635.120. Epub 2021 Jun 15. Genome Res. 2021. PMID: 34131006 Free PMC article.
-
AI-empowered integrative structural characterization of m6A methyltransferase complex.Cell Res. 2022 Dec;32(12):1124-1127. doi: 10.1038/s41422-022-00741-8. Epub 2022 Nov 10. Cell Res. 2022. PMID: 36357785 Free PMC article. No abstract available.
-
The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112.Nucleic Acids Res. 2019 Sep 5;47(15):7719-7733. doi: 10.1093/nar/gkz619. Nucleic Acids Res. 2019. PMID: 31328227 Free PMC article.
References
-
- Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallographica Section D Biological Crystallography. 2012;68:352–367. doi: 10.1107/S0907444912001308. - DOI - PMC - PubMed
-
- Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K, Carter AC, Flynn RA, Zhou C, Lim KS, Dedon P, Wernig M, Mullen AC, Xing Y, Giallourakis CC, Chang HY. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 2014;15:707–719. doi: 10.1016/j.stem.2014.09.019. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
