Synaptic failure: The achilles tendon of sphingolipidoses

J Neurosci Res. 2016 Nov;94(11):1031-6. doi: 10.1002/jnr.23753.

Abstract

The presence of life-threatening neurological symptoms in more than two-thirds of lysosomal storage diseases (LSDs) underscores how vulnerable the nervous system is to lysosomal failure. Neurological dysfunction in LSDs has historically been attributed to the disruption of neuronal and glial homeostasis resulting from the progressive jamming of the endosomal/lysosomal pathway. In neurons, a dysfunctional endosomal-lysosomal system can elicit dire consequences. Given that neurons are largely postmitotic after birth, one can clearly understand that the inability of these cells to proliferate obliterates any possibility of diluting stored lysosomal material by means of cellular division. At its most advanced stage, this situation constitutes a terminal factor in neuronal life, resulting in cell death. However, synaptic deficits in the absence of classical neuronal cell death appear to be common features during the early stages in many LSDs, particularly sphingolipidoses. In essence, failure of synapses to convey their messages, even without major structural damage to the neuronal bodies, is a form of physiological death. This concept of dying-back neuropathology is highly relevant not only for understanding the dynamics of the neurological decline in these diseases, but, more importantly; it might also constitute an important target for molecular therapies to protect perhaps the "Achilles" point in the entire physiological architecture of the brain, thus avoiding an irreversible journey to neuronal demise. © 2016 Wiley Periodicals, Inc.

Keywords: Krabbe's disease; dying-back pathology; neurodegeneration; psychosine; sphingolipids; synapse.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Humans
  • Models, Neurological
  • Nervous System / pathology*
  • Neurons / pathology*
  • Sphingolipidoses / pathology*
  • Synapses / physiology*