Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 13 (5), 056018

Spatial Co-Adaptation of Cortical Control Columns in a micro-ECoG Brain-Computer Interface

Spatial Co-Adaptation of Cortical Control Columns in a micro-ECoG Brain-Computer Interface

A G Rouse et al. J Neural Eng.


Objective: Electrocorticography (ECoG) has been used for a range of applications including electrophysiological mapping, epilepsy monitoring, and more recently as a recording modality for brain-computer interfaces (BCIs). Studies that examine ECoG electrodes designed and implanted chronically solely for BCI applications remain limited. The present study explored how two key factors influence chronic, closed-loop ECoG BCI: (i) the effect of inter-electrode distance on BCI performance and (ii) the differences in neural adaptation and performance when fixed versus adaptive BCI decoding weights are used.

Approach: The amplitudes of epidural micro-ECoG signals between 75 and 105 Hz with 300 μm diameter electrodes were used for one-dimensional and two-dimensional BCI tasks. The effect of inter-electrode distance on BCI control was tested between 3 and 15 mm. Additionally, the performance and cortical modulation differences between constant, fixed decoding using a small subset of channels versus adaptive decoding weights using the entire array were explored.

Main results: Successful BCI control was possible with two electrodes separated by 9 and 15 mm. Performance decreased and the signals became more correlated when the electrodes were only 3 mm apart. BCI performance in a 2D BCI task improved significantly when using adaptive decoding weights (80%-90%) compared to using constant, fixed weights (50%-60%). Additionally, modulation increased for channels previously unavailable for BCI control under the fixed decoding scheme upon switching to the adaptive, all-channel scheme.

Significance: Our results clearly show that neural activity under a BCI recording electrode (which we define as a 'cortical control column') readily adapts to generate an appropriate control signal. These results show that the practical minimal spatial resolution of these control columns with micro-ECoG BCI is likely on the order of 3 mm. Additionally, they show that the combination and interaction between neural adaptation and machine learning are critical to optimizing ECoG BCI performance.

Similar articles

See all similar articles

Cited by 5 PubMed Central articles

LinkOut - more resources