Validity and Reliability of Ventilatory and Blood Lactate Thresholds in Well-Trained Cyclists

PLoS One. 2016 Sep 22;11(9):e0163389. doi: 10.1371/journal.pone.0163389. eCollection 2016.

Abstract

Purpose: The purpose of this study was to determine, i) the reliability of blood lactate and ventilatory-based thresholds, ii) the lactate threshold that corresponds with each ventilatory threshold (VT1 and VT2) and with maximal lactate steady state test (MLSS) as a proxy of cycling performance.

Methods: Fourteen aerobically-trained male cyclists ([Formula: see text] 62.1±4.6 ml·kg-1·min-1) performed two graded exercise tests (50 W warm-up followed by 25 W·min-1) to exhaustion. Blood lactate, [Formula: see text] and [Formula: see text] data were collected at every stage. Workloads at VT1 (rise in [Formula: see text];) and VT2 (rise in [Formula: see text]) were compared with workloads at lactate thresholds. Several continuous tests were needed to detect the MLSS workload. Agreement and differences among tests were assessed with ANOVA, ICC and Bland-Altman. Reliability of each test was evaluated using ICC, CV and Bland-Altman plots.

Results: Workloads at lactate threshold (LT) and LT+2.0 mMol·L-1 matched the ones for VT1 and VT2, respectively (p = 0.147 and 0.539; r = 0.72 and 0.80; Bias = -13.6 and 2.8, respectively). Furthermore, workload at LT+0.5 mMol·L-1 coincided with MLSS workload (p = 0.449; r = 0.78; Bias = -4.5). Lactate threshold tests had high reliability (CV = 3.4-3.7%; r = 0.85-0.89; Bias = -2.1-3.0) except for DMAX method (CV = 10.3%; r = 0.57; Bias = 15.4). Ventilatory thresholds show high reliability (CV = 1.6%-3.5%; r = 0.90-0.96; Bias = -1.8-2.9) except for RER = 1 and V-Slope (CV = 5.0-6.4%; r = 0.79; Bias = -5.6-12.4).

Conclusions: Lactate threshold tests can be a valid and reliable alternative to ventilatory thresholds to identify the workloads at the transition from aerobic to anaerobic metabolism.

Grants and funding

The authors received no specific funding for this work.