Neurotensin stimulates sortilin and mTOR in human microglia inhibitable by methoxyluteolin, a potential therapeutic target for autism

Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):E7049-E7058. doi: 10.1073/pnas.1604992113. Epub 2016 Sep 23.


We had reported elevated serum levels of the peptide neurotensin (NT) in children with autism spectrum disorders (ASD). Here, we show that NT stimulates primary human microglia, the resident immune cells of the brain, and the immortalized cell line of human microglia-SV40. NT (10 nM) increases the gene expression and release (P < 0.001) of the proinflammatory cytokine IL-1β and chemokine (C-X-C motif) ligand 8 (CXCL8), chemokine (C-C motif) ligand 2 (CCL2), and CCL5 from human microglia. NT also stimulates proliferation (P < 0.05) of microglia-SV40. Microglia express only the receptor 3 (NTR3)/sortilin and not the NTR1 or NTR2. The use of siRNA to target sortilin reduces (P < 0.001) the NT-stimulated cytokine and chemokine gene expression and release from human microglia. Stimulation with NT (10 nM) increases the gene expression of sortilin (P < 0.0001) and causes the receptor to be translocated from the cytoplasm to the cell surface, and to be secreted extracellularly. Our findings also show increased levels of sortilin (P < 0.0001) in the serum from children with ASD (n = 36), compared with healthy controls (n = 20). NT stimulation of microglia-SV40 causes activation of the mammalian target of rapamycin (mTOR) signaling kinase, as shown by phosphorylation of its substrates and inhibition of these responses by drugs that prevent mTOR activation. NT-stimulated responses are inhibited by the flavonoid methoxyluteolin (0.1-1 μM). The data provide a link between sortilin and the pathological findings of microglia and inflammation of the brain in ASD. Thus, inhibition of this pathway using methoxyluteolin could provide an effective treatment of ASD.

Keywords: autism spectrum disorders; human microglia; mTOR; methoxyluteolin; sortilin.