Effect of Fly Ash on Properties of Crushed Brick and Reclaimed Asphalt in Pavement base/subbase Applications

J Hazard Mater. 2017 Jan 5;321:547-556. doi: 10.1016/j.jhazmat.2016.09.039. Epub 2016 Sep 18.


Fly Ash (FA), an abundant by-product with no carbon footprint, is a potential stabilizer for enhancing the physical and geotechnical properties of pavement aggregates. In this research, FA was used in different ratios to stabilize crushed brick (CB) and reclaimed asphalt pavement (RAP) for pavement base/subbase applications. The FA stabilization of CB and RAP was targeted to improve the strength and durability of these recycled materials for pavement base/subbase applications. The Unconfined Compressive Strength (UCS) and resilient modulus (MR) development of the stabilized CB and RAP aggregates was studied under room temperature and at an elevated temperatures of 40°C, and results compared with unbound CB and RAP. Analysis of atomic silica content showed that when the amount of silica and alumina crystalline was increased, the soil structure matrix deteriorated, resulting in strength reduction. The results of UCS and MR testing of FA stabilized CB and RAP aggregates indicated that FA was a viable binder for the stabilization of recycled CB and RAP. CB and RAP stabilized with 15% FA showed the highest UCS results at both room temperature and at 40°C. Higher temperature curing was also found to result in higher strengths.

Keywords: Fly ash; Geotechnical; Pavement; Recycled materials; Stabilization.