Extracellular Self-DNA (esDNA), but Not Heterologous Plant or Insect DNA (etDNA), Induces Plasma Membrane Depolarization and Calcium Signaling in Lima Bean (Phaseolus lunatus) and Maize (Zea mays)

Int J Mol Sci. 2016 Sep 29;17(10):1659. doi: 10.3390/ijms17101659.

Abstract

Extracellular self-DNA (esDNA) is produced during cell and tissue damage or degradation and has been shown to induce significant responses in several organisms, including plants. While the inhibitory effects of esDNA have been shown in conspecific individuals, little is known on the early events involved upon plant esDNA perception. We used electrophysiology and confocal laser scanning microscopy calcium localization to evaluate the plasma membrane potential (Vm) variations and the intracellular calcium fluxes, respectively, in Lima bean (Phaseolus lunatus) and maize (Zea mays) plants exposed to esDNA and extracellular heterologous DNA (etDNA) and to etDNA from Spodoptera littoralis larvae and oral secretions. In both species, esDNA induced a significant Vm depolarization and an increased flux of calcium, whereas etDNA was unable to exert any of these early signaling events. These findings confirm the specificity of esDNA to induce plant cell responses and to trigger early signaling events that eventually lead to plant response to damage.

Keywords: Lima bean; Spodoptera littoralis; calcium signaling; maize; plasma membrane potential; self-DNA recognition.