Improved Protein Conjugation with Uniform, Macroporous Poly(acrylamide-co-acrylic acid) Hydrogel Microspheres via EDC/NHS Chemistry

Langmuir. 2016 Oct 25;32(42):11043-11054. doi: 10.1021/acs.langmuir.6b02591. Epub 2016 Oct 14.

Abstract

We demonstrate a robust and tunable micromolding method to fabricate chemically functional poly(acrylamide-co-acrylic acid) (p(AAm-co-AA)) hydrogel microspheres with uniform dimensions and controlled porous network structures for rapid biomacromolecular conjugation. Specifically, p(AAm-co-AA) microspheres with abundant carboxylate functional groups are fabricated via surface-tension-induced droplet formation in patterned poly(dimethylsiloxane) molds and photoinduced radical polymerization. To demonstrate the chemical functionality, we enlisted rapid EDC/NHS (1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS)) chemistry for fluorescent labeling of the microspheres with small-molecule dye fluorescein glycine amide. Epifluorescence imaging results illustrate the uniform incorporation of carboxylate groups within the microspheres and rapid conjugation kinetics. Furthermore, protein conjugation results using red fluorescent protein R-phycoerythrin demonstrate the highly porous nature of the microspheres as well as the utility of the microspheres and the EDC/NHS scheme for facile biomacromolecular conjugation. Combined, these results illustrate the significant potential for our fabrication-conjugation strategy in the development of biofunctionalized polymeric hydrogel microparticles toward rapid biosensing, bioprocess monitoring, and biodiagnostics.