Genetic control of flowering time in rice: integration of Mendelian genetics and genomics

Theor Appl Genet. 2016 Dec;129(12):2241-2252. doi: 10.1007/s00122-016-2773-4. Epub 2016 Sep 30.


Integration of previous Mendelian genetic analyses and recent molecular genomics approaches, such as linkage mapping and QTL cloning, dramatically strengthened our current understanding of genetic control of rice flowering time. Flowering time is one of the most important agronomic traits for seed production in rice (Oryza sativa L.). It is controlled mainly by genes associated with photoperiod sensitivity, particularly in short-day plants such as rice. Since the early twentieth century, rice breeders and researchers have been interested in elucidating the genetic basis of flowering time because its modification is important for regional adaptation and yield optimization. Although flowering time is a complex trait controlled by many quantitative trait loci (QTLs), classical genetic studies have shown that many associated genes are inherited in accordance with Mendelian laws. Decoding the rice genome sequence opened a new era in understanding the genetic control of flowering time on the basis of genome-wide mapping and gene cloning. Heading date 1 (Hd1) was the first flowering time QTL to be isolated using natural variation in rice. Recent accumulation of information on rice genome has facilitated the cloning of other QTLs, including those with minor effects on flowering time. This information has allowed us to rediscover some of the flowering genes that were identified by classical Mendelian genetics. The genes characterized so far, including Hd1, have been assigned to specific photoperiod pathways. In this review, we provide an overview of the studies that led to an in-depth understanding of the genetic control of flowering time in rice, and of the current state of improving and fine-tuning this trait for rice breeding.

Publication types

  • Review

MeSH terms

  • Chromosome Mapping
  • Cloning, Molecular
  • Flowers / physiology*
  • Gene Expression Regulation, Plant
  • Gene Regulatory Networks
  • Genes, Plant*
  • Genomics
  • Oryza / genetics*
  • Oryza / physiology
  • Photoperiod*
  • Plant Breeding
  • Quantitative Trait Loci