IFN-γ targets macrophage-mediated immune responses toward Staphylococcus aureus

J Leukoc Biol. 2017 Mar;101(3):751-758. doi: 10.1189/jlb.4A1215-565RR. Epub 2016 Oct 5.

Abstract

Infections, especially with Staphylococcus aureus (SA), commonly cause morbidity and mortality in patients with chronic granulomatous disease (CGD), a condition characterized by a defective phagocyte oxidase. IFN-γ reduces the frequency and consequences of infection in CGD by mechanisms that remain unknown. As IFN-γ promotes bacterial killing, efferocytosis of effete polymorphonuclear neutrophils (PMN), and cytokine production in macrophages-the same macrophage effector functions that are impaired in response to SA-we hypothesized that IFN-γ may reverse these defects and thereby, augment macrophage control of SA during infection. IFN-γ primed activation of the NADPH oxidase in a time-dependent manner, enhanced killing of ingested SA independent of any effects on phagocytosis, and increased binding of SA-laden neutrophils (PMN-SA) to macrophages. However, IFN-γ did not increase the percentage of apoptotic PMN or PMN-SA internalized by macrophages. Under conditions in which viable SA were eliminated, PMN-SA primed the inflammasome for subsequent activation by silica but did not induce IL-1β production by macrophages. IFN-γ enhanced IL-6 production in response to SA or PMN-SA but did not increase inflammasome activation in response to either agonist. In summary, IFN-γ augmented direct killing of SA by macrophages, promoted engagement of PMN-SA, and enhanced macrophage-mediated cytokine responses that could collectively augment control of SA infection. Together, these findings support the hypothesis that IFN-γ improves responsiveness of macrophages to SA and provides insights into the mechanism of the clinical benefits of IFN-γ.

Keywords: CGD; MRSA; efferocytosis; inflammation; neutrophil.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Communication / drug effects
  • Endocytosis / drug effects
  • Humans
  • Inflammasomes / metabolism
  • Interferon-gamma / pharmacology*
  • Interleukin-1beta / metabolism
  • Interleukin-6 / metabolism
  • Macrophages / immunology*
  • Macrophages / microbiology*
  • Microbial Viability / drug effects
  • NADPH Oxidases / metabolism
  • NLR Family, Pyrin Domain-Containing 3 Protein / metabolism
  • Neutrophils / drug effects
  • Neutrophils / immunology
  • Staphylococcus aureus / drug effects
  • Staphylococcus aureus / immunology*

Substances

  • Inflammasomes
  • Interleukin-1beta
  • Interleukin-6
  • NLR Family, Pyrin Domain-Containing 3 Protein
  • NLRP3 protein, human
  • Interferon-gamma
  • NADPH Oxidases