Sensory feedback synchronizes motor and sensory neuronal networks in the neonatal rat spinal cord
- PMID: 27713428
- PMCID: PMC5494195
- DOI: 10.1038/ncomms13060
Sensory feedback synchronizes motor and sensory neuronal networks in the neonatal rat spinal cord
Abstract
Early stages of sensorimotor system development in mammals are characterized by the occurrence of spontaneous movements. Whether and how these movements support correlated activity in developing sensorimotor spinal cord circuits remains unknown. Here we show highly correlated activity in sensory and motor zones in the spinal cord of neonatal rats in vivo. Both during twitches and complex movements, movement-generating bursts in motor zones are followed by bursts in sensory zones. Deafferentation does not affect activity in motor zones and movements, but profoundly suppresses activity bursts in sensory laminae and results in sensorimotor uncoupling, implying a primary role of sensory feedback in sensorimotor synchronization. This is further supported by largely dissociated activity in sensory and motor zones observed in the isolated spinal cord in vitro. Thus, sensory feedback resulting from spontaneous movements is instrumental for coordination of activity in developing sensorimotor spinal cord circuits.
Conflict of interest statement
The authors declare no competing financial interests.
Figures
Similar articles
-
Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.J Physiol. 2007 Aug 15;583(Pt 1):115-28. doi: 10.1113/jphysiol.2007.133413. Epub 2007 Jun 14. J Physiol. 2007. PMID: 17569737 Free PMC article.
-
Glycine plays a crucial role as a co-agonist of NMDA receptors in the neuronal circuit generating body movements in rat fetuses.Neurosci Res. 2015 Aug;97:13-9. doi: 10.1016/j.neures.2015.03.004. Epub 2015 Mar 28. Neurosci Res. 2015. PMID: 25828272
-
Early motor activity drives spindle bursts in the developing somatosensory cortex.Nature. 2004 Dec 9;432(7018):758-61. doi: 10.1038/nature03132. Nature. 2004. PMID: 15592414
-
Transcriptional networks in the early development of sensory-motor circuits.Curr Top Dev Biol. 2009;87:119-48. doi: 10.1016/S0070-2153(09)01204-6. Curr Top Dev Biol. 2009. PMID: 19427518 Review.
-
Molecular mechanisms underlying monosynaptic sensory-motor circuit development in the spinal cord.Dev Dyn. 2018 Apr;247(4):581-587. doi: 10.1002/dvdy.24611. Epub 2018 Jan 17. Dev Dyn. 2018. PMID: 29226492 Free PMC article. Review.
Cited by
-
Intrinsic functional architecture of the non-human primate spinal cord derived from fMRI and electrophysiology.Nat Commun. 2019 Mar 29;10(1):1416. doi: 10.1038/s41467-019-09485-3. Nat Commun. 2019. PMID: 30926817 Free PMC article.
-
Long-range temporal organisation of limb movement kinematics in human neonates.Clin Neurophysiol Pract. 2020 Aug 14;5:194-198. doi: 10.1016/j.cnp.2020.07.007. eCollection 2020. Clin Neurophysiol Pract. 2020. PMID: 32984665 Free PMC article.
-
Lamina-specific population encoding of cutaneous signals in the spinal dorsal horn using multi-electrode arrays.J Physiol. 2019 Jan;597(2):377-397. doi: 10.1113/JP277036. Epub 2018 Dec 5. J Physiol. 2019. PMID: 30390415 Free PMC article.
-
Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI.Elife. 2017 Sep 12;6:e27814. doi: 10.7554/eLife.27814. Elife. 2017. PMID: 28893378 Free PMC article.
-
Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment.Front Toxicol. 2022 Feb 25;4:812863. doi: 10.3389/ftox.2022.812863. eCollection 2022. Front Toxicol. 2022. PMID: 35295216 Free PMC article. Review.
References
-
- Blumberg M. S., Freeman J. H. & Robinson S. R. Oxford Handbook of Developmental Behavioral Neuroscience Oxford University Press (2010).
-
- Hamburger V. in The Mammalian Fetus: Comparative Biology and Methodology ed. Hafez E. S. 69–81Charles C. Thomas (1975).
-
- De Vries J. I., Visser G. H. & Prechtl H. F. The emergence of fetal behaviour. I. Qualitative aspects. Early Hum. Dev. 7, 301–322 (1982). - PubMed
-
- Robinson S. R., Blumberg M. S., Lane M. S. & Kreber L. A. Spontaneous motor activity in fetal and infant rats is organized into discrete multilimb bouts. Behav. Neurosci. 114, 328–336 (2000). - PubMed
-
- Kreider J. C. & Blumberg M. S. Mesopontine contribution to the expression of active ‘twitch’ sleep in decerebrate week-old rats. Brain Res. 872, 149–159 (2000). - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
