New Insight into Atherosclerosis in Hemodialysis Patients: Overexpression of Scavenger Receptor and Macrophage Colony-Stimulating Factor Genes

Nephron Extra. 2016 Aug 27;6(2):22-30. doi: 10.1159/000448486. eCollection 2016 May-Aug.

Abstract

Background: Scavenger receptors (SRs) play a pivotal role in atherogenesis. The mechanism of atherosclerosis, which is specific to hemodialysis (HD) patients, was studied on the basis of SR gene expressions.

Methods: The gene expressions of SR type A (SR-A) and CD36 were studied in peripheral monocytes by real-time reverse transcription polymerase chain reaction. Data were compared between HD (n = 30) and age-matched control subjects (n = 10). Serum levels of macrophage colony-stimulating factor (M-CSF) were measured with enzyme-linked immunosorbent assay to test its role in SR expression. The statistical differences and associations between two continuous variables were assessed using the Mann-Whitney U test and Pearson's correlation coefficient, respectively.

Results: The relative quantities of SR mRNAs were significantly greater in HD patients than in controls [median (interquartile range): SR-A, 1.67 (0.96-2.76) vs. 0.90 (0.60-1.04), p = 0.0060; CD36, 1.09 (0.88-1.74) vs. 0.74 (0.64-0.99), p = 0.0255]. The serum concentration of M-CSF was significantly higher in HD patients than in controls [1, 121 (999-1,342) vs. 176 (155-202) pg/ml, p < 0.0001]. In addition, the relative quantity of M-CSF mRNA was significantly greater in HD patients than in controls [0.79 (0.42-1.53) vs. 0.42 (0.28-0.66), p = 0.0392]. The serum M-CSF levels were positively correlated with both the relative quantity of SR-A mRNA (r2 = 0.1681, p = 0.0086) and that of CD36 mRNA (r2 = 0.1202, p = 0.0284) in all subjects (n = 40).

Conclusion: HD patients are predisposed to atherosclerosis as a consequence of their enhanced monocyte SR expressions. SRs and M-CSF are potential therapeutic targets for atherosclerosis in this high-risk population.

Keywords: Cardiovascular disease; Colony-stimulating factor-1 receptor; Macrophage colony-stimulating factor; Real-time reverse transcription polymerase chain reaction.