Microindentation hardness and calcium/phosphorus ratio of dentin following excavation of dental caries lesions with different techniques

Springerplus. 2016 Sep 22;5(1):1641. doi: 10.1186/s40064-016-3289-8. eCollection 2016.


Background: The aim of this in vitro study was to evaluate the microindentation hardness and chemical composition of residual dentin left at the cavity bottom following removal of carious dentin using the Carisolv chemomechanical and Er:YAG laser caries excavation methods in comparison with the conventional tungsten-carbide bur excavation.

Methods: Sixty-nine extracted permanent teeth with occlusal dentin caries were assigned into three groups according to caries removal technique. Carious dentin excavation was guided by tactile method and a caries-staining dye. In stereomicroscope images (100×) of the samples, the presence or absence of residual caries was defined. The Knoop hardness value of the cavity floor was determined and atomic analysis of treated cavities was performed by energy dispersive X-ray spectroscopy.

Results: The Knoop hardness value of residual dentin left at the cavity bottom was lower (One-way ANOVA, Dunnett-C, p < 0.05) and the percentage of samples with remaining carious dentin was higher after Carisolv excavation than those obtained after conventional and laser excavations (Kruskal-Wallis, Mann-Whitney U, p < 0.05). No significant differences were found between the quantities of calcium content (Ca wt%), phosphorus content (P wt%) and calcium/phosphorus ratio of the cavities treated by three techniques (Kruskal-Wallis, Mann-Whitney U, p > 0.05).

Conclusion: The results indicated that Er:YAG laser was more comparable to conventional bur excavation than chemomechanical method in the efficacy of caries removal with regard to microindentation hardness of remaining dentin and both Carisolv gel and Er:YAG laser did not alter chemical composition of residual dentin in the treated cavities.

Keywords: Dental caries; Dental cavity preparation; Energy dispersive X-ray spectroscopy; Er:YAG lasers; Hardness; Scanning electron microscopy.