Time Course of Reach Adaptation and Proprioceptive Recalibration during Visuomotor Learning

PLoS One. 2016 Oct 12;11(10):e0163695. doi: 10.1371/journal.pone.0163695. eCollection 2016.

Abstract

Training to reach with rotated visual feedback results in adaptation of hand movements, which persist when the perturbation is removed (reach aftereffects). Training also leads to changes in felt hand position, which we refer to as proprioceptive recalibration. The rate at which motor and proprioceptive changes develop throughout training is unknown. Here, we aim to determine the timescale of these changes in order to gain insight into the processes that may be involved in motor learning. Following six rotated reach training trials (30° rotation), at three radially located targets, we measured reach aftereffects and perceived hand position (proprioceptive guided reaches). Participants trained with opposing rotations one week apart to determine if the original training led to any retention or interference. Results suggest that both motor and proprioceptive recalibration occurred in as few as six rotated-cursor training trials (7.57° & 3.88° respectively), with no retention or interference present one week after training. Despite the rapid speed of both motor and sensory changes, these shifts do not saturate to the same degree. Thus, different processes may drive these changes and they may not constitute a single implicit process.

MeSH terms

  • Adaptation, Physiological*
  • Adolescent
  • Adult
  • Feedback, Sensory / physiology
  • Female
  • Hand / physiology
  • Humans
  • Male
  • Movement
  • Photic Stimulation
  • Proprioception / physiology*
  • Time Factors
  • Young Adult

Grants and funding

This work was supported by the German Research Foundation (DFG) under grant no. HA 6861/2-1 (BMtH) and a NSERC Operating grant (DYPH and EKC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.