The visual number world: A dynamic approach to study the mathematical mind

Q J Exp Psychol (Hove). 2016 Oct 19:1-10. doi: 10.1080/17470218.2016.1240812. Online ahead of print.

Abstract

In the domain of language research, the simultaneous presentation of a visual scene and its auditory description (i.e., the visual world paradigm) has been used to reveal the timing of mental mechanisms. Here we apply this rationale to the domain of numerical cognition in order to explore the differences between fast and slow arithmetic performance, and to further study the role of spatial-numerical associations during mental arithmetic. We presented 30 healthy adults simultaneously with visual displays containing four numbers and with auditory addition and subtraction problems. Analysis of eye movements revealed that participants look spontaneously at the numbers they currently process (operands, solution). Faster performance was characterized by shorter latencies prior to fixating the relevant numbers and fewer revisits to the first operand while computing the solution. These signatures of superior task performance were more pronounced for addition and visual numbers arranged in ascending order, and for subtraction and numbers arranged in descending order (compared to the opposite pairings). Our results show that the "visual number world"-paradigm provides on-line access to the mind during mental arithmetic, is able to capture variability in arithmetic performance, and is sensitive to visual layout manipulations that are otherwise not reflected in response time measurements.

Keywords: Eye movements; Mental arithmetic; Mental number line; Visual world paradigm.