Preparation of gluten-free rice spaghetti with soy protein isolate using twin-screw extrusion

J Food Sci Technol. 2016 Sep;53(9):3485-3494. doi: 10.1007/s13197-016-2323-8. Epub 2016 Sep 12.


The objective of this study was to investigate the effect of soy protein isolate on functional properties and consumer acceptance of gluten-free rice spaghetti (GFRS) made from rice flour. Dry-milled high-amylose (Chai Nat 1) rice flour was premixed with dry-milled waxy (RD 6) rice flour at a ratio of 90:10 (w/w) with the soy protein isolate (SPI) concentration varying between 0, 2.5, 5.0, 7.5, 10.0 %, db. The GFRS formulation was processed using a co-rotating twin-screw extruder up to 95 °C with a screw speed of 220 rpm, 32 % moisture content, and then dried at 40 °C. The GFRS samples were analyzed by differential scanning calorimetry (DSC), X-ray diffraction, scanning electron microscopy (SEM) and texture parameters. Increasing SPI decreased the starch retrogradation of GFRS, whereas the enthalpy change of the amylose-lipid complex increased and crystallinity decreased. SEM revealed that the surface of GFRS containing SPI was much more porous than that of GFRS without SPI. The cooked GFRS containing 5.0 % SPI showed the best eating quality with increased firmness and tensile strength, and decrease stickiness. The GFRS samples were evaluated on the bases of cooking qualities and sensory evaluation. The results showed that the GFRS containing 5.0 % SPI decrease the cooking time from 17.6 to 13.7 min and cooking loss from 25.4 to 17.0 %. Overall acceptability of cooked GFRS containing 5.0 % SPI was the highest among all GFRS samples.

Keywords: Extrusion; Gluten- free; Rice; Rice spaghetti; Soy protein isolate.