Characterization and environmental relevance of oil water preparations of fresh and weathered MC-252 Macondo oils used in toxicology testing

Sci Total Environ. 2017 Jan 15;576:118-128. doi: 10.1016/j.scitotenv.2016.09.171. Epub 2016 Oct 23.


Comprehensive characterization of exposure media used in toxicology studies is still an area of significant divergence when evaluating potential oil spill impacts. When preparing exposure media used for toxicology testing, small variations in simple parameters such as mixing energy, oil type and loading can significantly affect the concentration of the oil components to which test organisms are exposed. The key goal of this study was compare and contrast the physical and chemical compositions of oil water mixtures prepared using fresh and weathered Macondo-related oils under different conditions of mixing and in the presence/absence of chemical dispersants. All samples were assessed for the presence of droplets, droplet size distribution, and detailed chemical composition including polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbon by fluorescence (TPHF). Preparations were also tested for stability over a 96h period relevant to acute toxicity tests. The results indicate that water accommodated fractions (WAFs) produced consistent, droplet free solutions with concentration that represented the soluble components of the oil used. As expected, chemically-enhanced WAFs (CEWAFs) and high-energy WAFs (HEWAFs) generated large amounts of micron-size droplets and their chemical composition corresponded closely with that of the whole oil. However, the HEWAFs were highly dynamic, and unlike CEWAFs, much of the oil resurfaced within few hours of the initial preparation. Viscosity and lack of dispersability are the limiting factors for preparation of CEWAFs with weathered oils, in contrast HEWAFs did effectively introduce large amounts of weathered oil droplets in the test media. Despite this benefit, droplet sizes significantly decreased in HEWAFs with increase in weathering of the oil creating an additional variable to consider. Because the contribution of small droplets to toxicity is a topic that needs further investigation, the interpretation of results from high-energy preparations needs to be further evaluated. When the TPAHs concentrations of all preparations at all loadings were compared with the publicly available water-column data for samples analyzed during and after the DWH incident response they all ranked above the vast majority of the 10,828 samples reported. Until a better characterization of all the available DWH water column individual-component chemistry data is produced the question of environmental relevance and the pursuit of toxicological studies under more realistic conditions continues to be a significant challenge that should be further explored.

Keywords: Crude oil; Deepwater Horizon; Exposure media; Gulf of Mexico; Physical and chemical characterization.

MeSH terms

  • Ecotoxicology / methods*
  • Oils / chemistry*
  • Petroleum
  • Petroleum Pollution / analysis*
  • Polycyclic Aromatic Hydrocarbons


  • Oils
  • Petroleum
  • Polycyclic Aromatic Hydrocarbons