Lung Cancer Subtypes Generate Unique Immune Responses
- PMID: 27799309
- PMCID: PMC5116260
- DOI: 10.4049/jimmunol.1600576
Lung Cancer Subtypes Generate Unique Immune Responses
Abstract
Lung cancer, the leading cause of cancer-related deaths worldwide, is a heterogeneous disease comprising multiple histologic subtypes that harbor disparate mutational profiles. Immune-based therapies have shown initial promise in the treatment of lung cancer patients but are limited by low overall response rates. We sought to determine whether the host immune response to lung cancer is dictated, at least in part, by histologic and genetic differences, because such correlations would have important clinical ramifications. Using mouse models of lung cancer, we show that small cell lung cancer (SCLC) and lung adenocarcinoma (ADCA) exhibit unique immune cell composition of the tumor microenvironment. The total leukocyte content was markedly reduced in SCLC compared with lung ADCA, which was validated in human lung cancer specimens. We further identified key differences in immune cell content using three models of lung ADCA driven by mutations in Kras, p53, and Egfr Although Egfr-mutant cancers displayed robust myeloid cell recruitment, they failed to mount a CD8+ immune response. In contrast, Kras-mutant tumors displayed significant expansion of multiple immune cell types, including CD8+ cells, regulatory T cells, IL-17A-producing lymphocytes, and myeloid cells. A human tissue microarray annotated for KRAS and EGFR mutations validated the finding of reduced CD8+ content in human lung ADCA. Taken together, these findings establish a strong foundational knowledge of the immune cell contexture of lung ADCA and SCLC and suggest that molecular and histological traits shape the host immune response to cancer.
Copyright © 2016 by The American Association of Immunologists, Inc.
Figures
Similar articles
-
Epidermal growth factor receptor mutations in small cell lung cancer: a brief report.J Thorac Oncol. 2011 Jan;6(1):195-8. doi: 10.1097/JTO.0b013e3181f94abb. J Thorac Oncol. 2011. PMID: 21178714
-
Reciprocal CD4+ T-cell balance of effector CD62Llow CD4+ and CD62LhighCD25+ CD4+ regulatory T cells in small cell lung cancer reflects disease stage.Clin Cancer Res. 2008 Nov 1;14(21):6770-9. doi: 10.1158/1078-0432.CCR-08-1156. Clin Cancer Res. 2008. PMID: 18980970
-
Small-cell carcinoma in the setting of pulmonary adenocarcinoma: new insights in the era of molecular pathology.J Thorac Oncol. 2013 Oct;8(10):1265-71. doi: 10.1097/JTO.0b013e3182a407fa. J Thorac Oncol. 2013. PMID: 24457237
-
Development of targeted therapy and immunotherapy for treatment of small cell lung cancer.Jpn J Clin Oncol. 2018 Jul 1;48(7):603-608. doi: 10.1093/jjco/hyy068. Jpn J Clin Oncol. 2018. PMID: 29762727 Review.
-
Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.Lancet Oncol. 2015 Apr;16(4):e165-72. doi: 10.1016/S1470-2045(14)71180-5. Lancet Oncol. 2015. PMID: 25846096 Free PMC article. Review.
Cited by
-
Tumor immune microenvironment analysis of non-small cell lung cancer development through multiplex immunofluorescence.Transl Lung Cancer Res. 2024 Sep 30;13(9):2395-2410. doi: 10.21037/tlcr-24-379. Epub 2024 Sep 20. Transl Lung Cancer Res. 2024. PMID: 39430335 Free PMC article.
-
Development and validation of a genomic mutation signature to predict response to PD-1 inhibitors in non-squamous NSCLC: a multicohort study.J Immunother Cancer. 2020 Jun;8(1):e000381. doi: 10.1136/jitc-2019-000381. J Immunother Cancer. 2020. PMID: 32606052 Free PMC article.
-
Potential value of efficacy prediction and treatment of natural killer cells in extensive stage small cell lung cancer.Thorac Cancer. 2023 Apr;14(10):864-872. doi: 10.1111/1759-7714.14837. Epub 2023 Mar 1. Thorac Cancer. 2023. PMID: 36861174 Free PMC article. Review.
-
The landscape of immune microenvironment in lung adenocarcinoma and squamous cell carcinoma based on PD-L1 expression and tumor-infiltrating lymphocytes.Cancer Med. 2019 Dec;8(17):7207-7218. doi: 10.1002/cam4.2580. Epub 2019 Oct 11. Cancer Med. 2019. PMID: 31605439 Free PMC article.
-
KRAS as a Modulator of the Inflammatory Tumor Microenvironment: Therapeutic Implications.Cells. 2022 Jan 24;11(3):398. doi: 10.3390/cells11030398. Cells. 2022. PMID: 35159208 Free PMC article. Review.
References
-
- Howlader N, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER Cancer Statistics Review. National Cancer Institute; Bethesda, MD.: 1975-2011.
-
- Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, Plenker D, Leenders F, Sun R, Zander T, Menon R, Koker M, Dahmen I, Muller C, Di Cerbo V, Schildhaus HU, Altmuller J, Baessmann I, Becker C, de Wilde B, Vandesompele J, Bohm D, Ansen S, Gabler F, Wilkening I, Heynck S, Heuckmann JM, Lu X, Carter SL, Cibulskis K, Banerji S, Getz G, Park KS, Rauh D, Grutter C, Fischer M, Pasqualucci L, Wright G, Wainer Z, Russell P, Petersen I, Chen Y, Stoelben E, Ludwig C, Schnabel P, Hoffmann H, Muley T, Brockmann M, Engel-Riedel W, Muscarella LA, Fazio VM, Groen H, Timens W, Sietsma H, Thunnissen E, Smit E, Heideman DA, Snijders PJ, Cappuzzo F, Ligorio C, Damiani S, Field J, Solberg S, Brustugun OT, Lund-Iversen M, Sanger J, Clement JH, Soltermann A, Moch H, Weder W, Solomon B, Soria JC, Validire P, Besse B, Brambilla E, Brambilla C, Lantuejoul S, Lorimier P, Schneider PM, Hallek M, Pao W, Meyerson M, Sage J, Shendure J, Schneider R, Buttner R, Wolf J, Nurnberg P, Perner S, Heukamp LC, Brindle PK, Haas S, Thomas RK. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 2012;44:1104–1110. - PMC - PubMed
-
- Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, Spitznagel EL, Piccirillo J. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J. Clin. Oncol. 2006;24:4539–4544. - PubMed
-
- Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA, Ng B, Milosavljevic A, Gonzalez-Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C, Fewell G, Haipek C, Schmidt H, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T, Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tonon G, Weir BA, Zhao X, Ziaugra L, Zody MC, Giordano T, Orringer MB, Roth JA, Spitz MR, Wistuba II, Ozenberger B, Good PJ, Chang AC, Beer DG, Watson MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM, Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455:1069–1075. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
