Binocular iPad Game vs Patching for Treatment of Amblyopia in Children: A Randomized Clinical Trial

JAMA Ophthalmol. 2016 Dec 1;134(12):1402-1408. doi: 10.1001/jamaophthalmol.2016.4224.


Importance: Fellow eye patching has long been the standard treatment for amblyopia, but it does not always restore 20/20 vision or teach the eyes to work together. Amblyopia can be treated with binocular games that rebalance contrast between the eyes so that a child may overcome suppression. However, it is unclear whether binocular treatment is comparable to patching in treating amblyopia.

Objectives: To assess the effectiveness of a binocular iPad (Apple Inc) adventure game as amblyopia treatment and compare this binocular treatment with patching, the current standard of care.

Design, setting, and participants: This investigation was a randomized clinical trial with a crossover design at a nonprofit eye research institute. Between February 20, 2015, and January 4, 2016, a total of 28 patients were enrolled in the study, with 14 randomized to binocular game treatment and 14 to patching treatment.

Interventions: Binocular game and patching as amblyopia treatments.

Main outcomes and measures: The primary outcome was change in amblyopic eye best-corrected visual acuity (BCVA) at the 2-week visit. Secondary outcomes were change in stereoacuity and suppression at the 2-week visit and change in BCVA at the 4-week visit.

Results: Among 28 children, the mean (SD) age at baseline was 6.7 (1.4) years (age range, 4.6-9.5 years), and 7 (25%) were female. At baseline, the mean (SD) amblyopic eye BCVA was 0.48 (0.14) logMAR (approximately 20/63; range, 0.3-0.8 logMAR [20/40 to 20/125]), with 14 children randomized to the binocular game and 14 to patching for 2 weeks. At the 2-week visit, improvement in amblyopic eye BCVA was greater with the binocular game compared with patching, with a mean (SD) improvement of 0.15 (0.08) logMAR (mean [SD], 1.5 [0.8] lines) vs 0.07 (0.08) logMAR (mean [SD], 0.7 [0.8] line; P = .02) after 2 weeks of treatment. These improvements from baseline were significant for the binocular game (mean [SD] improvement, 1.5 [0.8] lines; P < .001) and for patching (mean [SD] improvement, 0.7 [0.8] line; P = .006). Depth of suppression improved from baseline at the 2-week visit for the binocular game (mean [SD], 4.82 [2.82] vs 3.24 [2.87]; P = .03) and for patching (mean [SD], 4.77 [3.10] vs 2.57 [1.67]; P = .004). Patching children crossed over to binocular game treatment, and all 28 children played the game for another 2 weeks. At the 4-week visit, no group difference was found in BCVA change, with children who crossed over to the binocular games catching up with children treated with binocular games, for a mean (SD) improvement of 0.17 (0.10) logMAR (mean [SD], 1.7 [1.0] lines) for the binocular game vs a mean (SD) improvement of 0.16 (0.12) logMAR (mean [SD], 1.6 [1.2] lines) for the patching crossover (P = .73).

Conclusions and relevance: A binocular iPad game was effective in treating childhood amblyopia and was more efficacious than patching at the 2-week visit. Binocular games that rebalance contrast to overcome suppression are a promising additional option for treating amblyopia.

Trial registration: Identifier: NCT02365090.

Publication types

  • Multicenter Study
  • Randomized Controlled Trial

MeSH terms

  • Amblyopia / physiopathology*
  • Amblyopia / therapy
  • Child
  • Child, Preschool
  • Computers, Handheld*
  • Cross-Over Studies
  • Eyeglasses*
  • Female
  • Follow-Up Studies
  • Humans
  • Male
  • Retrospective Studies
  • Treatment Outcome
  • Video Games*
  • Vision, Binocular / physiology*
  • Visual Acuity / physiology

Associated data