Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila
- PMID: 27836984
- PMCID: PMC6307840
- DOI: 10.1093/molbev/msw248
Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila
Abstract
Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond.
Keywords: Drosophila; gene turnover; positive selection; telomere; terminin.; transposable element.
© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Figures
Similar articles
-
Organization and maintenance of Drosophila telomeres: the roles of terminin and non-terminin proteins.Tsitologiia. 2013;55(3):204-8. Tsitologiia. 2013. PMID: 23795467
-
Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins.PLoS One. 2015 Nov 13;10(11):e0142771. doi: 10.1371/journal.pone.0142771. eCollection 2015. PLoS One. 2015. PMID: 26566042 Free PMC article.
-
The Analysis of Pendolino (peo) Mutants Reveals Differences in the Fusigenic Potential among Drosophila Telomeres.PLoS Genet. 2015 Jun 25;11(6):e1005260. doi: 10.1371/journal.pgen.1005260. eCollection 2015 Jun. PLoS Genet. 2015. PMID: 26110638 Free PMC article.
-
Transposon control mechanisms in telomere biology.Curr Opin Genet Dev. 2018 Apr;49:56-62. doi: 10.1016/j.gde.2018.03.002. Epub 2018 Mar 20. Curr Opin Genet Dev. 2018. PMID: 29571043 Review.
-
The Telomere Paradox: Stable Genome Preservation with Rapidly Evolving Proteins.Trends Genet. 2020 Apr;36(4):232-242. doi: 10.1016/j.tig.2020.01.007. Epub 2020 Feb 12. Trends Genet. 2020. PMID: 32155445 Free PMC article. Review.
Cited by
-
The nanoCUT&RUN technique visualizes telomeric chromatin in Drosophila.PLoS Genet. 2022 Sep 1;18(9):e1010351. doi: 10.1371/journal.pgen.1010351. eCollection 2022 Sep. PLoS Genet. 2022. PMID: 36048878 Free PMC article.
-
On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements.Genes (Basel). 2019 May 30;10(6):419. doi: 10.3390/genes10060419. Genes (Basel). 2019. PMID: 31151307 Free PMC article. Review.
-
Prevalent Fast Evolution of Genes Involved in Heterochromatin Functions.Mol Biol Evol. 2024 Sep 4;41(9):msae181. doi: 10.1093/molbev/msae181. Mol Biol Evol. 2024. PMID: 39189646 Free PMC article.
-
Beyond speciation genes: an overview of genome stability in evolution and speciation.Curr Opin Genet Dev. 2017 Dec;47:17-23. doi: 10.1016/j.gde.2017.07.014. Epub 2017 Aug 19. Curr Opin Genet Dev. 2017. PMID: 28830007 Free PMC article. Review.
-
Rapid evolution at the Drosophila telomere: transposable element dynamics at an intrinsically unstable locus.Genetics. 2021 Feb 9;217(2):iyaa027. doi: 10.1093/genetics/iyaa027. Genetics. 2021. PMID: 33724410 Free PMC article.
References
-
- Bartolome C, Maside X. 2004. The lack of recombination drives the fixation of transposable elements on the fourth chromosome of Drosophila melanogaster. Genet Res. 83:91–100. - PubMed
-
- Berloco M, Fanti L, Sheen F, Levis RW, Pimpinelli S. 2005. Heterochromatic distribution of HeT-A- and TART-like sequences in several Drosophila species. Cytogenet Genome Res. 110:124–133. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
