Plasmonic control of extraordinary optical transmission in the infrared regime

Nanotechnology. 2016 Dec 16;27(50):505202. doi: 10.1088/0957-4484/27/50/505202. Epub 2016 Nov 14.

Abstract

We demonstrate that the spectral location of extraordinary optical transmission (EOT) resonances in metallic arrays of rectangular holes can be plasmonically tuned in the near and mid-infrared ranges. The experiments have been performed on patterned gold films. We focus on a subset of localized resonances occurring close to the cut-off wavelength of the holes, λ c. Metals are usually regarded as perfect electric conductors in the infrared regime, with an EOT cut-off resonance found around λ c = 2 L for rectangular holes (L being the long edge). For real metals, the penetration of the electromagnetic fields is simply seen as effectively enlarging L. However, by changing the hole short edge, we have found that λ c varies due to the excitation of gap surface plasmon polaritons. Finite-element calculations confirm that in these high aspect ratio rectangles with short edges two important aspects have to be taken into account in order to explain the experiments: the finite conductivity of the metal and the excitation of gap-surface plasmons inside the nanoholes.