Morphological Neuron Classification Using Machine Learning
- PMID: 27847467
- PMCID: PMC5088188
- DOI: 10.3389/fnana.2016.00102
Morphological Neuron Classification Using Machine Learning
Abstract
Classification and quantitative characterization of neuronal morphologies from histological neuronal reconstruction is challenging since it is still unclear how to delineate a neuronal cell class and which are the best features to define them by. The morphological neuron characterization represents a primary source to address anatomical comparisons, morphometric analysis of cells, or brain modeling. The objectives of this paper are (i) to develop and integrate a pipeline that goes from morphological feature extraction to classification and (ii) to assess and compare the accuracy of machine learning algorithms to classify neuron morphologies. The algorithms were trained on 430 digitally reconstructed neurons subjectively classified into layers and/or m-types using young and/or adult development state population of the somatosensory cortex in rats. For supervised algorithms, linear discriminant analysis provided better classification results in comparison with others. For unsupervised algorithms, the affinity propagation and the Ward algorithms provided slightly better results.
Keywords: classification; machine learning; morphologies; neurons; supervised learning; unsupervised learning.
Figures
Similar articles
-
Classification of neocortical interneurons using affinity propagation.Front Neural Circuits. 2013 Dec 3;7:185. doi: 10.3389/fncir.2013.00185. eCollection 2013. Front Neural Circuits. 2013. PMID: 24348339 Free PMC article.
-
Development of an image classification pipeline for atherosclerotic plaques assessment using supervised machine learning.BMC Bioinformatics. 2022 Dec 14;23(1):542. doi: 10.1186/s12859-022-05059-1. BMC Bioinformatics. 2022. PMID: 36517749 Free PMC article.
-
Objective Supervised Machine Learning-Based Classification and Inference of Biological Neuronal Networks.Molecules. 2022 Sep 23;27(19):6256. doi: 10.3390/molecules27196256. Molecules. 2022. PMID: 36234792 Free PMC article.
-
Comparison between supervised and unsupervised classifications of neuronal cell types: a case study.Dev Neurobiol. 2011 Jan 1;71(1):71-82. doi: 10.1002/dneu.20809. Dev Neurobiol. 2011. PMID: 21154911 Free PMC article.
-
Algorithms and Techniques for the Structural Health Monitoring of Bridges: Systematic Literature Review.Sensors (Basel). 2023 Apr 24;23(9):4230. doi: 10.3390/s23094230. Sensors (Basel). 2023. PMID: 37177433 Free PMC article. Review.
Cited by
-
Multi-level feature fusion network for neuronal morphology classification.Front Neurosci. 2024 Oct 21;18:1465642. doi: 10.3389/fnins.2024.1465642. eCollection 2024. Front Neurosci. 2024. PMID: 39498391 Free PMC article.
-
NeuriteNet: A convolutional neural network for assessing morphological parameters of neurite growth.J Neurosci Methods. 2021 Nov 1;363:109349. doi: 10.1016/j.jneumeth.2021.109349. Epub 2021 Sep 2. J Neurosci Methods. 2021. PMID: 34480956 Free PMC article.
-
The roles of supervised machine learning in systems neuroscience.Prog Neurobiol. 2019 Apr;175:126-137. doi: 10.1016/j.pneurobio.2019.01.008. Epub 2019 Feb 7. Prog Neurobiol. 2019. PMID: 30738835 Free PMC article. Review.
-
Application of quantum machine learning using quantum kernel algorithms on multiclass neuron M-type classification.Sci Rep. 2023 Jul 17;13(1):11541. doi: 10.1038/s41598-023-38558-z. Sci Rep. 2023. PMID: 37460767 Free PMC article.
-
Mining Big Neuron Morphological Data.Comput Intell Neurosci. 2018 Jun 24;2018:8234734. doi: 10.1155/2018/8234734. eCollection 2018. Comput Intell Neurosci. 2018. PMID: 30034462 Free PMC article. Review.
References
-
- Abdi H., Williams L. J. (2010). Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2 433–459. 10.1002/wics.101 - DOI
-
- Albanese D., Visintainer R., Merler S., Riccadonna S., Jurman G., Furlanello C. (2012). Mlpy: machine learning python. arXiv.
-
- Aliyari Ghassabeh Y., Rudzicz F., Moghaddam H. A. (2015). Fast incremental LDA feature extraction. Pattern Recognit. 48 1999–2012. 10.1016/j.patcog.2014.12.012 - DOI
-
- Altman N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46 175–185. 10.1080/00031305.1992.10475879 - DOI
-
- Ascoli G. A. (2002a). Computational Neuroanatomy, Principles and Methods. Totawa, NJ: Humana Press.
LinkOut - more resources
Full Text Sources
Other Literature Sources
