Bioinformatics and Drug Discovery
- PMID: 27848897
- PMCID: PMC5421137
- DOI: 10.2174/1568026617666161116143440
Bioinformatics and Drug Discovery
Abstract
Bioinformatic analysis can not only accelerate drug target identification and drug candidate screening and refinement, but also facilitate characterization of side effects and predict drug resistance. High-throughput data such as genomic, epigenetic, genome architecture, cistromic, transcriptomic, proteomic, and ribosome profiling data have all made significant contribution to mechanismbased drug discovery and drug repurposing. Accumulation of protein and RNA structures, as well as development of homology modeling and protein structure simulation, coupled with large structure databases of small molecules and metabolites, paved the way for more realistic protein-ligand docking experiments and more informative virtual screening. I present the conceptual framework that drives the collection of these high-throughput data, summarize the utility and potential of mining these data in drug discovery, outline a few inherent limitations in data and software mining these data, point out news ways to refine analysis of these diverse types of data, and highlight commonly used software and databases relevant to drug discovery.
Keywords: Drug candidate; Drug screening; Drug target; Epigenetics; Genomics; Proteomics; Structure; Transcriptomics.
Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Figures
Similar articles
-
Advances in Drug Discovery based on Genomics, Proteomics and Bioinformatics in Malaria.Curr Top Med Chem. 2023;23(7):551-578. doi: 10.2174/1568026623666230418114455. Curr Top Med Chem. 2023. PMID: 37073654 Review.
-
Transcriptomic Data Mining and Repurposing for Computational Drug Discovery.Methods Mol Biol. 2019;1903:73-95. doi: 10.1007/978-1-4939-8955-3_5. Methods Mol Biol. 2019. PMID: 30547437
-
Bioinformatics Approaches for Anti-cancer Drug Discovery.Curr Drug Targets. 2020;21(1):3-17. doi: 10.2174/1389450120666190923162203. Curr Drug Targets. 2020. PMID: 31549592 Review.
-
Informatics resources for tuberculosis--towards drug discovery.Tuberculosis (Edinb). 2012 Mar;92(2):133-8. doi: 10.1016/j.tube.2011.08.006. Epub 2011 Sep 22. Tuberculosis (Edinb). 2012. PMID: 21943870 Review.
-
Established and emerging trends in computational drug discovery in the structural genomics era.Chem Biol. 2012 Jan 27;19(1):29-41. doi: 10.1016/j.chembiol.2011.12.007. Chem Biol. 2012. PMID: 22284352 Review.
Cited by
-
Microarray data analysis of antileukemic action of Cinnamoylated benzaldehyde LQB-461 in Jurkat cell line.Mol Biol Rep. 2024 Jan 25;51(1):187. doi: 10.1007/s11033-023-09030-y. Mol Biol Rep. 2024. PMID: 38270684
-
An AI Approach to Identifying Novel Therapeutics for Rheumatoid Arthritis.J Pers Med. 2023 Nov 23;13(12):1633. doi: 10.3390/jpm13121633. J Pers Med. 2023. PMID: 38138860 Free PMC article. Review.
-
Selection of Mexican Medicinal Plants by Identification of Potential Phytochemicals with Anti-Aging, Anti-Inflammatory, and Anti-Oxidant Properties through Network Analysis and Chemoinformatic Screening.Biomolecules. 2023 Nov 20;13(11):1673. doi: 10.3390/biom13111673. Biomolecules. 2023. PMID: 38002355 Free PMC article.
-
Drug repurposing based on the similarity gene expression signatures to explore for potential indications of quercetin: a case study of multiple sclerosis.Front Chem. 2023 Sep 8;11:1250043. doi: 10.3389/fchem.2023.1250043. eCollection 2023. Front Chem. 2023. PMID: 37744058 Free PMC article.
-
Investigation of the therapeutic role of native plant compounds against colorectal cancer based on system biology and virtual screening.Sci Rep. 2023 Jul 15;13(1):11451. doi: 10.1038/s41598-023-38134-5. Sci Rep. 2023. PMID: 37454152 Free PMC article.
References
-
- David E., Tramontin T., Zemmel R., Pharmaceutical R. D: the road to positive returns. Nat. Rev. Drug Discov. 2009;8:609–610. - PubMed
-
- Drews J., Ryser S. The role of innovation in drug development. Nat. Biotechnol. 1997;15:1318–1319. - PubMed
-
- Boxall A.B., Rudd M.A., Brooks B.W., Caldwell D.J., Choi K., Hickmann S., Innes E., Ostapyk K., Staveley J.P., Verslycke T., Ankley G.T., Beazley K.F., Belanger S.E., Berninger J.P., Carriquiriborde P., Coors A., Deleo P.C., Dyer S.D., Ericson J.F., Gagne F., Giesy J.P., Gouin T., Hallstrom L., Karlsson M.V., Larsson D.G., Lazorchak J.M., Mastrocco F., McLaughlin A., McMaster M.E., Meyerhoff R.D., Moore R., Parrott J.L., Snape J.R., Murray-Smith R., Servos M.R., Sibley P.K., Straub J.O., Szabo N.D., Topp E., Tetreault G.R., Trudeau V.L., Van Der Kraak G. Pharmaceuticals and personal care products in the environment: what are the big questions? Environ. Health Perspect. 2012;120:1221–1219. - PMC - PubMed
-
- Doolittle R.F., Hunkapiller M.W., Hood L.E., Devare S.G., Robbins K.C., Aaronson S.A., Antoniades H.N. Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science. 1983;221:275–277. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources