IL-35 is a recently identified cytokine exhibiting potent immunosuppressive properties. The therapeutic potential and effects of IL-35 on pathogenic T effector cells (Teff) and Foxp3+ Treg, however, are ill defined. We tested the capacity of IL-35 to suppress ongoing autoimmunity in NOD mice. For this purpose, an adeno-associated virus vector in which IL-35 transgene expression is selectively targeted to β cells via an insulin promoter (AAV8mIP-IL35) was used. AAV8mIP-IL35 vaccination of NOD mice at a late preclinical stage of type 1 diabetes (T1D) suppressed β-cell autoimmunity and prevented diabetes onset. Numbers of islet-resident conventional CD4+ and CD8+ T cells, and DCs were reduced within 4 weeks of AAV8mIP-IL35 treatment. The diminished islet T-cell pool correlated with suppressed proliferation, and a decreased frequency of IFN-γ-expressing Teff. Ectopic IL-35 also reduced islet Foxp3+ Treg numbers and proliferation, and protection was independent of induction/expansion of adaptive islet immunoregulatory T cells. These findings demonstrate that IL-35-mediated suppression is sufficiently robust to block established β-cell autoimmunity, and support the use of IL-35 to treat T1D and other T-cell-mediated autoimmune diseases.
Keywords: Cytokine immunotherapy; IL-35; NOD mice; Type 1 diabetes; β cell.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.