Long Distance Measurements up to 160 Å in the GroEL Tetradecamer Using Q-Band DEER EPR Spectroscopy
- PMID: 27860003
- PMCID: PMC5166617
- DOI: 10.1002/anie.201609617
Long Distance Measurements up to 160 Å in the GroEL Tetradecamer Using Q-Band DEER EPR Spectroscopy
Abstract
Current distance measurements between spin-labels on multimeric protonated proteins using double electron-electron resonance (DEER) EPR spectroscopy are generally limited to the 15-60 Å range. Here we show how DEER experiments can be extended to dipolar evolution times of ca. 80 μs, permitting distances up to 170 Å to be accessed in multimeric proteins. The method relies on sparse spin-labeling, supplemented by deuteration of protein and solvent, to minimize the deleterious impact of multispin effects and substantially increase the apparent spin-label phase memory relaxation time, complemented by high sensitivity afforded by measurements at Q-band. We demonstrate the approach using the tetradecameric molecular machine GroEL as an example. Two engineered surface-exposed mutants, R268C and E315C, are used to measure pairwise distance distributions with mean values ranging from 20 to 100 Å and from 30 to 160 Å, respectively, both within and between the two heptameric rings of GroEL. The measured distance distributions are consistent with the known crystal structure of apo GroEL. The methodology presented here should significantly expand the use of DEER for the structural characterization of conformational changes in higher order oligomers.
Keywords: EPR spectroscopy; biophysics; chemical physics; spectroscopic methods; structural biology.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures
Similar articles
-
Sparse Labeling PELDOR Spectroscopy on Multimeric Mechanosensitive Membrane Channels.Biophys J. 2017 Nov 7;113(9):1968-1978. doi: 10.1016/j.bpj.2017.09.005. Biophys J. 2017. PMID: 29117521 Free PMC article.
-
Disassembly/reassembly strategy for the production of highly pure GroEL, a tetradecameric supramolecular machine, suitable for quantitative NMR, EPR and mutational studies.Protein Expr Purif. 2018 Feb;142:8-15. doi: 10.1016/j.pep.2017.09.010. Epub 2017 Sep 22. Protein Expr Purif. 2018. PMID: 28951283 Free PMC article.
-
Enhancing sensitivity of Double Electron-Electron Resonance (DEER) by using Relaxation-Optimized Acquisition Length Distribution (RELOAD) scheme.J Magn Reson. 2019 Jan;298:115-126. doi: 10.1016/j.jmr.2018.12.004. Epub 2018 Dec 5. J Magn Reson. 2019. PMID: 30544015 Free PMC article.
-
Molecular chaperone GroEL/ES: unfolding and refolding processes.Biochemistry (Mosc). 2013 Dec;78(13):1405-14. doi: 10.1134/S0006297913130038. Biochemistry (Mosc). 2013. PMID: 24490731 Review.
-
Exploring protein structural ensembles: Integration of sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling methods.Elife. 2024 Sep 16;13:e99770. doi: 10.7554/eLife.99770. Elife. 2024. PMID: 39283059 Free PMC article. Review.
Cited by
-
New Horizons in Structural Biology of Membrane Proteins: Experimental Evaluation of the Role of Conformational Dynamics and Intrinsic Flexibility.Membranes (Basel). 2022 Feb 16;12(2):227. doi: 10.3390/membranes12020227. Membranes (Basel). 2022. PMID: 35207148 Free PMC article. Review.
-
HDX-guided EPR spectroscopy to interrogate membrane protein dynamics.STAR Protoc. 2022 Jul 18;3(3):101562. doi: 10.1016/j.xpro.2022.101562. eCollection 2022 Sep 16. STAR Protoc. 2022. PMID: 35874470 Free PMC article.
-
Spin-labeled nanobodies as protein conformational reporters for electron paramagnetic resonance in cellular membranes.Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2441-2448. doi: 10.1073/pnas.1913737117. Epub 2020 Jan 21. Proc Natl Acad Sci U S A. 2020. PMID: 31964841 Free PMC article.
-
A facile approach for the in vitro assembly of multimeric membrane transport proteins.Elife. 2018 Jun 11;7:e36478. doi: 10.7554/eLife.36478. Elife. 2018. PMID: 29889023 Free PMC article.
-
Submillisecond Freezing Permits Cryoprotectant-Free EPR Double Electron-Electron Resonance Spectroscopy.Chemphyschem. 2020 Jun 16;21(12):1224-1229. doi: 10.1002/cphc.202000312. Epub 2020 May 20. Chemphyschem. 2020. PMID: 32383308 Free PMC article.
References
-
- Milov AD, Salikhov KM, Shirov MD. Fiz. Tverd. Tela. 1981;23:975–982.
- Milov AD, Ponomarev AB, Tsvetkov YD. Chem. Phys. Lett. 1984;110:67–82.
- Larsen RG, Singel DJ. J. Chem. Phys. 1993;98:5134–5146.
- Pannier M, Veit S, Godt A, Jeschke G, Spiess HW. J. Magn. Reson. 2000;142:331–340. - PubMed
-
- Jeschke G. ChemPhysChem. 2002;3:927–932. - PubMed
- Ward R, Bowman A, Sozudogru E, El-Mkami H, Owen-Hughes T, Norman DG. J. Magn. Reson. 2010;207:164–167. - PMC - PubMed
- Bowman A, Hammond CM, Stirling A, Ward R, Shang W, El-Mkami H, Robinson DA, Svergun DI, Norman DG, Owen-Hughes T. Nucl. Acids Res. 2014;42:6038–6051. - PMC - PubMed
- El Mkami H, Norman DG. Methods Enzymol. 2015;564:125–152. - PubMed
-
- Hagelueken G, Ingledew WJ, Huang H, Petrovic-Stojanovska B, Whitfield C, ElMkami H, Schiemann O, Naismith JH. Angew. Chemie Int. Ed. 2009;48:2904–2906. - PMC - PubMed
- Edwards DT, Huber T, Hussain S, Stone KM, Kinnebrew M, Kaminker I, Matalon E, Sherwin MS, Goldfarb D, Han S. Structure. 2014;22:1677–1686. - PubMed
- Valera S, Ackermann K, Pliotas C, Huang H, Naismith JH, Bode BE. Chemistry. 2016;22:4700–4703. - PMC - PubMed
- Giannoulis A, Ward R, Branigan E, Naismith JH, Bode BE. Mol. Phys. 2013;111:2845–2854. - PMC - PubMed
- Endeward B, Butterwick JA, MacKinnon R, Prisner TF. J. Am. Chem. Soc. 2009;131:15246–15250. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
