Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 16 (5), 054206
eCollection

Hard-templating of Chiral TiO 2 Nanofibres With Electron Transition-Based Optical Activity

Affiliations

Hard-templating of Chiral TiO 2 Nanofibres With Electron Transition-Based Optical Activity

Cui Wang et al. Sci Technol Adv Mater.

Abstract

The fabrication of optically active inorganic nanomaterials with chiral superstructures attracts attention because of their potential applications in chemical sensing and non-linear optics. Here, we present a facile way to prepare TiO2 nanofibres, in which the nanocrystals are helically arranged into a chiral superstructure. Notably, the chiral superstructure shows strong optical activity due to the difference of absorbing left- and right-handed circularly polarized light. This special optical activity resulted from electron transition from the valence band to the conduction band of TiO2 through a vicinal effect of helically arranged TiO2 nanocrystals.

Keywords: anatase; circular dichroism; electron transition-based optical activity; hard-templating method.

Figures

Figure 1.
Figure 1.
SEM and TEM images of the chiral L-TiO2@CPPyN (a-1) and (a-2), L-TiO2@CCN (b-1) and (b-2), L-P-TiO2 (a-3) and (a-4) and L-C-TiO2 (b-3) and (b-4).
Figure 2.
Figure 2.
XRD patterns of the samples shown in figure 1.
Figure 3.
Figure 3.
The HRTEM image and the corresponding Fourier diffractograms (FDs) of three nanocrystals in the L-P-TiO2 nanofibres shown in figure 1(a-3).
Figure 4.
Figure 4.
Nitrogen adsorption–desorption isotherms and pore size distributions of L-P-TiO2 (a) and L-C- TiO2 (b). The isotherm b is offset vertically by 80 cm3 g−1 STP.
Figure 5.
Figure 5.
UV–vis and DRCD spectra of antipodal as-prepared hybrid materials templated by PPy (L/R-TiO2@CPPyN) and carbon nanotubes (L/R-TiO2@CCN) and calcined (L/R-P-TiO2 and L/R-C-TiO2) chiral TiO2 nanotubes.

Similar articles

See all similar articles

References

    1. Sharma V, , Crne M, , Park J O., and Srinivasarao M. Science. 2009;325:449. doi: 10.1126/science.1172051. - DOI - PubMed
    1. Vignolini S, , Rudall P J, , Rowland A V, , Reed A, , Moyroud E, , Faden R B, , Baumberg J J, , Glover B J., and Steiner U. Proc. Natl Acad. Sci. 2012;109:054206 doi: 10.1073/pnas.1210105109. - DOI - PMC - PubMed
    1. Robbie K, , Broer D J., and Brett M J. Nature. 1999;399:764. doi: 10.1038/21612. - DOI
    1. Shopsowitz K E, , Qi H, , Hamad W Y., and MacLachlan M J. Nature. 2010;468:422. doi: 10.1038/nature09540. - DOI - PubMed
    1. Shopsowitz K E, , Stahl A, , Hamad W Y., and MacLachlan M J. Angew. Chem. Int. Edn. 2012;51:6886. doi: 10.1002/anie.201201113. - DOI - PubMed

LinkOut - more resources

Feedback