Treatment of Oral Biofilms by a D-Enantiomeric Peptide

PLoS One. 2016 Nov 23;11(11):e0166997. doi: 10.1371/journal.pone.0166997. eCollection 2016.


Almost all dental diseases are caused by biofilms that consist of multispecies communities. DJK-5, which is a short D-enantiomeric, protease-resistant peptide with broad-spectrum anti-biofilm activity, was tested for its effect on oral multispecies biofilms. Peptide DJK-5 at 10 μg/mL effectively prevented the growth of these microbes in culture media in a time-dependent manner. In addition to the prevention of growth, peptide DJK-5 completely killed both Streptococcus mutans and Enterococcus faecalis suspended from biofilms after 30 minutes of incubation in liquid culture media. DJK-5 also led to the effective killing of microbes in plaque biofilm. The proportion of bacterial cells killed by 10 μg/mL of DJK-5 was similar after 1 and 3 days, both exceeding 85%. DJK-5 was able to significantly prevent biofilm formation over 3 days (P = 0.000). After 72 hours of exposure, DJK-5 significantly reduced and almost completely prevented plaque biofilm production by more than 90% of biovolume compared to untreated controls (P = 0.000). The proportion of dead biofilm bacteria at the 10 μg/mL DJK-5 concentration was similar for 1- and 3-day-old biofilms, whereby >86% of the bacteria were killed. DJK-5 was also able to kill >79% and >85% of bacteria, respectively, after one-time and three brief treatments of 3-day-old biofilms. The combination of DJK-5 and chlorhexidine showed the best bacterial killing among all treatments, with ~83% and >88% of bacterial cells killed after 1 and 3 minutes, respectively. No significant difference was found in the percentage of biofilm killing amongst three donor plaque samples after DJK-5 treatment. In particular, DJK-5 showed strong performance in inhibiting biofilm development and eradicating pre-formed oral biofilms compared to L-enantiomeric peptide 1018. DJK-5 was very effective against oral biofilms when used alone or combined with chlorhexidine, and may be a promising agent for use in oral anti-biofilm strategies in the future.

Publication types

  • Clinical Trial

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Biofilms / drug effects*
  • Biofilms / growth & development
  • Enterococcus faecalis / physiology*
  • Female
  • Humans
  • Male
  • Mouth / microbiology*
  • Oligopeptides / pharmacology*
  • Streptococcus mutans / physiology*


  • Anti-Bacterial Agents
  • DJK-5 peptide
  • Oligopeptides