Enrichment of small pathogenic deletions at chromosome 9p24.3 and 9q34.3 involving DOCK8, KANK1, EHMT1 genes identified by using high-resolution oligonucleotide-single nucleotide polymorphism array analysis

Mol Cytogenet. 2016 Nov 15;9:82. doi: 10.1186/s13039-016-0291-3. eCollection 2016.


Background: High-resolution oligo-SNP array allowed the identification of extremely small pathogenic deletions at numerous clinically relevant regions. In our clinical practice, we found that small pathogenic deletions were frequently encountered at chromosome 9p and 9q terminal regions.

Results: A review of 531 cases with reportable copy number changes on chromosome 9 revealed142 pathogenic copy number variants (CNVs): 104 losses, 31 gains, 7 complex chromosomal rearrangements. Of 104 pathogenic losses, 57 were less than 1 Mb in size, enriched at 9p24.3 and 9q34.3 regions, involving the DOCK8, KANK1, EHMT1 genes. The remaining 47 cases were due to interstitial or terminal deletions larger than 1 Mb or unbalanced translocations. The small pathogenic deletions of DOCK8, KANK1 and EHMT1 genes were more prevalent than small pathogenic deletions of NRXN1, DMD, SHANK3 genes and were only second to the 16p11.2 deletion syndrome, 593-kb (OMIM #611913).

Conclusions: This study corroborated comprehensive genotype-phenotype large scale studies at 9p24.3 and 9q24.3 regions for a better understanding of the pathogenicity caused by haploinsufficiency of the DOCK8, KANK1 and EHMT1 genes.

Trial registration number: None; it is not a clinical trial, and the cases were retrospectively collected and analyzed.

Keywords: Haploinsufficiency; High resolution oligonucleotide-single nucleotide polymorphism array analysis; Homozygous deletions; Small pathogenic deletions.