The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite
- PMID: 27906133
- PMCID: PMC5133447
- DOI: 10.1098/rsob.160249
The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite
Abstract
Acquisition of genes by plastid genomes (plastomes) via horizontal gene transfer (HGT) seems to be a rare phenomenon. Here, we report an interesting case of HGT revealed by sequencing the plastomes of the eustigmatophyte algae Monodopsis sp. MarTras21 and Vischeria sp. CAUP Q 202. These plastomes proved to harbour a unique cluster of six genes, most probably acquired from a bacterium of the phylum Bacteroidetes, with homologues in various bacteria, typically organized in a conserved uncharacterized putative operon. Sequence analyses of the six proteins encoded by the operon yielded the following annotation for them: (i) a novel family without discernible homologues; (ii) a new family within the superfamily of metallo-dependent hydrolases; (iii) a novel subgroup of the UbiA superfamily of prenyl transferases; (iv) a new clade within the sugar phosphate cyclase superfamily; (v) a new family within the xylose isomerase-like superfamily; and (vi) a hydrolase for a phosphate moiety-containing substrate. We suggest that the operon encodes enzymes of a pathway synthesizing an isoprenoid-cyclitol-derived compound, possibly an antimicrobial or other protective substance. To the best of our knowledge, this is the first report of an expansion of the metabolic capacity of a plastid mediated by HGT into the plastid genome.
Keywords: Eustigmatophyceae; UbiA superfamily; horizontal gene transfer; plastid genome; secondary metabolism; sugar phosphate cyclase superfamily.
© 2016 The Authors.
Figures
Similar articles
-
A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria.ISME J. 2018 Sep;12(9):2163-2175. doi: 10.1038/s41396-018-0177-y. Epub 2018 Jun 7. ISME J. 2018. PMID: 29880910 Free PMC article.
-
Plastid Genomes and Proteins Illuminate the Evolution of Eustigmatophyte Algae and Their Bacterial Endosymbionts.Genome Biol Evol. 2019 Feb 1;11(2):362-379. doi: 10.1093/gbe/evz004. Genome Biol Evol. 2019. PMID: 30629162 Free PMC article.
-
A Comparative Analysis of Mitochondrial Genomes in Eustigmatophyte Algae.Genome Biol Evol. 2016 Feb 12;8(3):705-22. doi: 10.1093/gbe/evw027. Genome Biol Evol. 2016. PMID: 26872774 Free PMC article.
-
Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.Methods Mol Biol. 2009;532:501-15. doi: 10.1007/978-1-60327-853-9_29. Methods Mol Biol. 2009. PMID: 19271204 Review.
-
The Algal Revolution.Trends Plant Sci. 2017 Aug;22(8):726-738. doi: 10.1016/j.tplants.2017.05.005. Epub 2017 Jun 10. Trends Plant Sci. 2017. PMID: 28610890 Review.
Cited by
-
Biotechnological Production of the Sunscreen Pigment Scytonemin in Cyanobacteria: Progress and Strategy.Mar Drugs. 2021 Feb 27;19(3):129. doi: 10.3390/md19030129. Mar Drugs. 2021. PMID: 33673485 Free PMC article. Review.
-
EDB Gene Cluster-Dependent Indole Production Is Responsible for the Ability of Pseudomonas fluorescens NZI7 to Repel Grazing by Caenorhabditis elegans.J Nat Prod. 2022 Mar 25;85(3):590-598. doi: 10.1021/acs.jnatprod.1c01046. Epub 2022 Jan 25. J Nat Prod. 2022. PMID: 35077157 Free PMC article.
-
A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria.ISME J. 2018 Sep;12(9):2163-2175. doi: 10.1038/s41396-018-0177-y. Epub 2018 Jun 7. ISME J. 2018. PMID: 29880910 Free PMC article.
-
Timing the Evolutionary Advent of Cyanobacteria and the Later Great Oxidation Event Using Gene Phylogenies of a Sunscreen.mBio. 2019 May 21;10(3):e00561-19. doi: 10.1128/mBio.00561-19. mBio. 2019. PMID: 31113897 Free PMC article.
-
Implicating the red body of Nannochloropsis in forming the recalcitrant cell wall polymer algaenan.Nat Commun. 2024 Jun 27;15(1):5456. doi: 10.1038/s41467-024-49277-y. Nat Commun. 2024. PMID: 38937455 Free PMC article.
References
-
- Rezanka T, Petránková M, Cepák V, Pribyl P, Sigler K, Cajthaml T. 2010. Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol. (Praha) 55, 265–269. (doi:10.1007/s12223-010-0039-0) - DOI - PubMed
-
- Ma XN, Chen TP, Yang B, Liu J, Chen F. 2016. Lipid production from Nannochloropsis. Mar. Drugs 14, 61 (doi:10.3390/md14040061) - DOI - PMC - PubMed
-
- Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC. 2012. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat. Commun. 3, 686 (doi:10.1038/ncomms1688) - DOI - PMC - PubMed
-
- Vieler A, et al. 2012. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet. 8, e1003064 (doi:10.1371/journal.pgen.1003064) - DOI - PMC - PubMed
-
- Wang D, et al. 2014. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet. 10, e1004094 (doi:10.1371/journal.pgen.1004094) - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
